有n种物品可以放入背包,每种物品重量为wi和价值为vi,每种物品可以放多个,背包的最大重量限制是b,求使得背包价值最大的物品选择方案,利用分支限界法的思想解决下列问题: 1.该问题的代价函数如何设计? 2.利用最大效益优先的方式进行遍历,写出算法的伪代码; 3.根据伪代码,写出matlab代码
时间: 2023-12-02 09:09:36 浏览: 48
完全背包_背包问题_容量为c的背包_背包_完全背包_4321_
5星 · 资源好评率100%
1. 该问题的代价函数可以设计为当前已经选入的物品的总价值加上剩余物品的最大价值估计。其中剩余物品的最大价值估计可以通过将剩余物品按照单位重量的价值从大到小排序,然后依次将剩余空间填满,直到无法再放入为止,此时得到的总价值即为剩余物品的最大价值估计。
2. 最大效益优先的方式进行遍历,可以使用优先队列来实现。具体算法的伪代码如下:
```
initialize a priority queue Q
insert an empty state into Q
while Q is not empty do
remove the state s with the highest priority from Q
if s is a goal state then
return s
for each item i do
if i can be added to s without exceeding the weight limit then
create a new state s' by adding i to s
if s' has a greater priority than the best solution found so far then
insert s' into Q
```
3. 根据伪代码,可以编写如下的 Matlab 代码:
```matlab
function [max_value, selected_items] = knapsack(values, weights, capacity)
n = length(values);
selected_items = zeros(n, 1);
max_value = 0;
% sort items by unit value in descending order
unit_values = values ./ weights;
[~, sorted_indices] = sort(unit_values, 'descend');
% initialize priority queue with empty state
queue = PriorityQueue();
queue.insert(struct('weight', 0, 'value', 0, 'items', selected_items, 'bound', 0));
while ~queue.isempty()
% remove state with highest priority from queue
state = queue.pop();
if state.bound < max_value
% prune this state, as it cannot lead to a better solution
continue;
end
if state.weight <= capacity && state.value > max_value
% update best solution found so far
max_value = state.value;
selected_items = state.items;
end
if state.bound > max_value
% generate child states by adding each item to the current state
for i = 1:n
j = sorted_indices(i);
if state.weight + weights(j) <= capacity
% add item j to the current state
new_items = state.items;
new_items(j) = new_items(j) + 1;
% compute bound for the new state
new_value = state.value + values(j);
new_weight = state.weight + weights(j);
remaining_capacity = capacity - new_weight;
if i < n
% estimate maximum value for remaining items using fractional knapsack
remaining_values = unit_values(sorted_indices(i+1:end)) .* weights(sorted_indices(i+1:end));
[~, idx] = sort(remaining_values, 'descend');
remaining_values = remaining_values(idx);
remaining_weights = weights(sorted_indices(i+1:end));
remaining_weights = remaining_weights(idx);
while remaining_capacity > 0 && ~isempty(remaining_weights)
take = min(remaining_capacity, remaining_weights(1));
new_value = new_value + take * unit_values(sorted_indices(i+1:end));
remaining_capacity = remaining_capacity - take;
remaining_weights(1) = remaining_weights(1) - take;
if remaining_weights(1) == 0
remaining_weights(1) = [];
remaining_values(1) = [];
end
end
end
% add new state to the queue
queue.insert(struct('weight', new_weight, 'value', new_value, 'items', new_items, 'bound', new_value + remaining_values(1)));
end
end
end
end
end
```
阅读全文