Iteration 3, loss = 0.80156650 Iteration 4, loss = 0.62018600

时间: 2024-04-05 07:35:48 浏览: 10
这段信息是BP神经网络模型训练的迭代过程中的提示信息。每一次迭代都会计算训练数据集上的损失函数(loss function)并将其输出到控制台。随着迭代次数的增加,损失函数的值应该逐渐降低,因为模型越来越好地拟合训练数据集。在这个示例中,第三次迭代时的损失函数值为0.80156650,第四次迭代时的损失函数值为0.62018600。这表明模型正在逐渐改善,损失函数值正在减小。
相关问题

Iteration 220, loss = 0.08889790 Iteration 221, loss = 0.09024347 Iteration 222, loss = 0.08819274怎么减少

这些输出是神经网络在训练过程中的损失值,损失值表示模型预测值与真实值之间的差距,损失值越小表示模型的预测值越接近真实值。 如果你想减少这些损失值,可以考虑以下几个方面: 1. 调整学习率:学习率控制着每次更新权重的步长,如果学习率过大,则可能会导致模型在训练过程中震荡,学习率过小,则可能会导致收敛速度过慢。可以尝试逐步降低学习率,或者使用自适应学习率的方法,如Adam。 2. 调整模型复杂度:如果模型过于复杂,容易导致过拟合,训练出来的模型在测试集上的表现不好。可以尝试减少隐藏层的数量或节点数,或者使用正则化方法(如L1、L2正则化)来减少过拟合。 3. 调整训练数据集:可以尝试增加训练数据集的大小,或者使用数据增强的方法来扩充数据集。 4. 调整优化器:优化器用来计算损失函数的梯度,并更新权重。可以尝试使用不同的优化器,如SGD、Adam、Adagrad等,或者调整优化器的超参数(如动量、学习率衰减等)。 5. 调整批量大小:批量大小指每次训练模型时使用的样本数量。可以尝试调整批量大小,通常较小的批量大小可以提高模型的泛化能力,但会增加训练时间。 需要注意的是,优化神经网络模型需要一定的经验和技巧,具体的调整方法需要根据具体问题和数据集进行选择和尝试。

for iteration in range(it_time): wx = torch.mm(train_x, w) # 前向传播 loss = (0.5 * (train_y - wx) ** 2).mean() # 计算 MSE loss loss.backward() # 反向传播 y_train_loss[iteration] = loss w.data.sub_(lr*w.grad) # w = w - lr*w.grad w.grad.zero_() # w的梯度清零,如果不清零,会一直累加 if iteration%100 == 0 and iteration!=0: wx_val = torch.mm(val_x, w) y_val_loss[int(iteration/100)] = (0.5 * (val_y - wx_val) ** 2).mean() 怎么保存这段代码的权重信息

要保存这段代码的权重信息,你可以使用 `torch.save()` 方法将模型的参数保存到文件中。在你的代码中,你可以在循环结束后添加以下代码来保存权重信息: ```python torch.save(w, 'model_weights.pth') ``` 这会将变量 `w` 的权重保存到名为 `model_weights.pth` 的文件中。你可以自定义文件名和路径。 如果你想要保存整个模型,包括其他参数和网络结构等信息,可以使用以下代码: ```python torch.save(model, 'model.pth') ``` 其中,`model` 是你的模型对象。这样会将整个模型保存到名为 `model.pth` 的文件中。 要加载已保存的权重信息,可以使用 `torch.load()` 方法。例如,要加载之前保存的 `model_weights.pth` 文件中的权重,可以使用以下代码: ```python w = torch.load('model_weights.pth') ``` 这会将权重加载到变量 `w` 中。如果要加载整个模型,可以使用以下代码: ```python model = torch.load('model.pth') ``` 请注意,加载模型时,你需要确保与保存时的模型结构和参数匹配。

相关推荐

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LassoCV from sklearn.model_selection import train_test_split # 加载数据集 abalone = fetch_openml(name='abalone', version=1, as_frame=True) # 获取特征和标签 X = abalone.data y = abalone.target # 对性别特征进行独热编码 gender_encoder = OneHotEncoder(sparse=False) gender_encoded = gender_encoder.fit_transform(X[['Sex']]) # 特征缩放 scaler = StandardScaler() X_scaled = scaler.fit_transform(X.drop('Sex', axis=1)) # 合并编码后的性别特征和其他特征 X_processed = np.hstack((gender_encoded, X_scaled)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_processed, y, test_size=0.2, random_state=42) # 初始化Lasso回归模型 lasso = LassoCV(alphas=[1e-4], random_state=42) # 随机梯度下降算法迭代次数和损失函数值 n_iterations = 200 losses = [] for iteration in range(n_iterations): # 随机选择一个样本 random_index = np.random.randint(len(X_train)) X_sample = X_train[random_index].reshape(1, -1) y_sample = y_train[random_index].reshape(1, -1) # 计算目标函数值与最优函数值之差 lasso.fit(X_sample, y_sample) loss = np.abs(lasso.coef_ - lasso.coef_).sum() losses.append(loss) # 绘制迭代效率图 plt.plot(range(n_iterations), losses) plt.xlabel('Iteration') plt.ylabel('Difference from Optimal Loss') plt.title('Stochastic Gradient Descent Convergence') plt.show()上述代码报错,请修改

x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型

param = {'num_leaves': 31, 'min_data_in_leaf': 20, 'objective': 'binary', 'learning_rate': 0.06, "boosting": "gbdt", "metric": 'None', "verbosity": -1} trn_data = lgb.Dataset(trn, trn_label) val_data = lgb.Dataset(val, val_label) num_round = 666 # clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100, # early_stopping_rounds=300, feval=win_score_eval) clf = lgb.train(param, trn_data, num_round) # oof_lgb = clf.predict(val, num_iteration=clf.best_iteration) test_lgb = clf.predict(test, num_iteration=clf.best_iteration)thresh_hold = 0.5 oof_test_final = test_lgb >= thresh_hold print(metrics.accuracy_score(test_label, oof_test_final)) print(metrics.confusion_matrix(test_label, oof_test_final)) tp = np.sum(((oof_test_final == 1) & (test_label == 1))) pp = np.sum(oof_test_final == 1) print('accuracy1:%.3f'% (tp/(pp)))test_postive_idx = np.argwhere(oof_test_final == True).reshape(-1) # test_postive_idx = list(range(len(oof_test_final))) test_all_idx = np.argwhere(np.array(test_data_idx)).reshape(-1) stock_info['trade_date_id'] = stock_info['trade_date'].map(date_map) stock_info['trade_date_id'] = stock_info['trade_date_id'] + 1tmp_col = ['ts_code', 'trade_date', 'trade_date_id', 'open', 'high', 'low', 'close', 'ma5', 'ma13', 'ma21', 'label_final', 'name'] stock_info.iloc[test_all_idx[test_postive_idx]] tmp_df = stock_info[tmp_col].iloc[test_all_idx[test_postive_idx]].reset_index() tmp_df['label_prob'] = test_lgb[test_postive_idx] tmp_df['is_limit_up'] = tmp_df['close'] == tmp_df['high'] buy_df = tmp_df[(tmp_df['is_limit_up']==False)].reset_index() buy_df.drop(['index', 'level_0'], axis=1, inplace=True)buy_df['buy_flag'] = 1 stock_info_copy['sell_flag'] = 0tmp_idx = (index_df['trade_date'] == test_date_min+1) close1 = index_df[tmp_idx]['close'].values[0] test_date_max = 20220829 tmp_idx = (index_df['trade_date'] == test_date_max) close2 = index_df[tmp_idx]['close'].values[0]tmp_idx = (stock_info_copy['trade_date'] >= test_date_min) & (stock_info_copy['trade_date'] <= test_date_max) tmp_df = stock_info_copy[tmp_idx].reset_index(drop=True)from imp import reload import Account reload(Account) money_init = 200000 account = Account.Account(money_init, max_hold_period=20, stop_loss_rate=-0.07, stop_profit_rate=0.12) account.BackTest(buy_df, tmp_df, index_df, buy_price='open')tmp_df2 = buy_df[['ts_code', 'trade_date', 'label_prob', 'label_final']] tmp_df2 = tmp_df2.rename(columns={'trade_date':'buy_date'}) tmp_df = account.info tmp_df['buy_date'] = tmp_df['buy_date'].apply(lambda x: int(x)) tmp_df = tmp_df.merge(tmp_df2, on=['ts_code', 'buy_date'], how='left')最终的tmp_df是什么?tmp_df[tmp_df['label_final']==1]又选取了什么股票?

最新推荐

recommend-type

【图像压缩】 GUI矩阵的奇异值分解SVD灰色图像压缩【含Matlab源码 4359期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

node-v0.9.2-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信