from sklearn.linear_model import LinearRegression LR1 = LinearRegression() #train the model LR1.fit(X,y)
时间: 2024-04-03 09:35:34 浏览: 78
sklearn常用的API参数解析:sklearn.linear_model.LinearRegression
这段代码使用了scikit-learn库中的线性回归模型,其中LR1是一个LinearRegression对象,表示一个线性回归模型。代码的第一行导入了LinearRegression模型,第二行创建了一个LR1对象。
接下来,代码使用fit()函数来训练模型。其中,X是一个二维数组,表示自变量,y是一个一维数组,表示因变量。在训练模型时,LR1.fit(X,y)会将X和y作为参数传入,从而训练出一个线性回归模型。此时,模型已经学习到了自变量和因变量之间的线性关系,可以用于预测新的数据。
需要注意的是,Fit函数的作用是训练模型,也就是调节模型的权重和偏置,使得模型在训练集上的预测结果与真实值的误差最小化。训练好的模型可以用来预测新的数据,但是需要注意过拟合和欠拟合的问题。
阅读全文