迎风格式计算一维线性平流方程数值解
时间: 2023-07-17 14:53:31 浏览: 108
下面说明在什么条件下能使-偏微分方程数值解
一维线性平流方程的一般形式为:
$$\frac{\partial u}{\partial t} + a\frac{\partial u}{\partial x} = 0$$
其中,$u$ 是待求函数,$a$ 是常数,表示平流速度。为了求解该方程的数值解,我们采用迎风格式。
迎风格式的离散形式为:
$$\frac{u_i^{n+1}-u_i^n}{\Delta t} + a\frac{u_i^n-u_{i-1}^n}{\Delta x} \leq 0$$
其中,$u_i^n$ 表示 $u(x_i,t_n)$ 的近似值,$\Delta t$ 和 $\Delta x$ 分别表示时间步长和空间步长。上式中的不等式表示采用迎风格式时,数值解是稳定的。
将上式变形得到:
$$u_i^{n+1}=u_i^n-a\frac{\Delta t}{\Delta x}(u_i^n-u_{i-1}^n)$$
这是迎风格式的迭代公式,用该公式可以递推求解 $u(x_i,t_{n+1})$ 的近似值。初始条件 $u(x,0)$ 可以通过插值得到,边界条件需要根据具体情况设定。
阅读全文