八数码问题a*算法python
时间: 2023-11-14 15:03:55 浏览: 51
八数码问题A*算法
以下是使用python语言实现八数码问题的a*算法代码:
```python
from queue import PriorityQueue
class Node:
def __init__(self, state, parent=None, move=None):
self.state = state
self.parent = parent
self.move = move
self.g = 0
self.h = 0
def __lt__(self, other):
return (self.g + self.h) < (other.g + other.h)
def __eq__(self, other):
return self.state == other.state
def __str__(self):
return str(self.state)
def __repr__(self):
return str(self.state)
def get_blank_pos(state):
for i in range(3):
for j in range(3):
if state[i][j] == 0:
return i, j
def get_successors(state):
i, j = get_blank_pos(state)
successors = []
if i > 0:
new_state = [row[:] for row in state]
new_state[i][j], new_state[i-1][j] = new_state[i-1][j], new_state[i][j]
successors.append(Node(new_state))
if i < 2:
new_state = [row[:] for row in state]
new_state[i][j], new_state[i+1][j] = new_state[i+1][j], new_state[i][j]
successors.append(Node(new_state))
if j > 0:
new_state = [row[:] for row in state]
new_state[i][j], new_state[i][j-1] = new_state[i][j-1], new_state[i][j]
successors.append(Node(new_state))
if j < 2:
new_state = [row[:] for row in state]
new_state[i][j], new_state[i][j+1] = new_state[i][j+1], new_state[i][j]
successors.append(Node(new_state))
return successors
def manhattan_distance(state):
dist = 0
for i in range(3):
for j in range(3):
if state[i][j] != 0:
row, col = divmod(state[i][j]-1, 3)
dist += abs(row-i) + abs(col-j)
return dist
def a_star(initial_state):
initial_node = Node(initial_state)
initial_node.h = manhattan_distance(initial_state)
frontier = PriorityQueue()
frontier.put(initial_node)
explored = set()
while not frontier.empty():
node = frontier.get()
explored.add(node.state)
if node.h == 0:
path = []
while node.parent != None:
path.append(node.move)
node = node.parent
path.reverse()
return path
for successor in get_successors(node.state):
if successor.state not in explored:
successor.g = node.g + 1
successor.h = manhattan_distance(successor.state)
successor.parent = node
successor.move = successor.state[node.state.index(0)][node.state[node.state.index(0)].index(0)] # move is the number moved to the blank position
frontier.put(successor)
return None
# example usage
initial_state = [[1, 2, 3], [4, 5, 6], [0, 7, 8]]
path = a_star(initial_state)
print(path)
```
该代码实现了a*算法来解决八数码问题,其中Node类表示搜索树中的节点,包括节点状态、父节点、移动操作、g值和h值等信息。get_blank_pos()函数用于获取状态中空白位置的行和列。get_successors()函数用于生成当前状态的所有可能后继状态。manhattan_distance()函数用于计算当前状态与目标状态之间的曼哈顿距离。a_star()函数是主要的搜索函数,使用优先队列来管理搜索树中的所有节点,同时使用explored集合来记录已经访问过的状态,以避免重复搜索。最终返回的是从初始状态到目标状态的一系列移动操作。
阅读全文