a*算法八数码问题python
时间: 2023-07-28 11:22:09 浏览: 133
A*算法是一种启发式搜索算法,常用于解决路径规划问题。八数码问题是其中一种经典的路径规划问题,也可以使用A*算法来求解。
下面是使用Python实现A*算法解决八数码问题的代码:
```python
import heapq
# 定义八数码问题的状态类
class EightPuzzleState:
def __init__(self, state, parent=None, action=None, depth=0, heuristic=0):
self.state = state
self.parent = parent
self.action = action
self.depth = depth
self.heuristic = heuristic
def __lt__(self, other):
return self.depth + self.heuristic < other.depth + other.heuristic
def __eq__(self, other):
return self.state == other.state
def __hash__(self):
return hash(str(self.state))
def __repr__(self):
return str(self.state)
# 获取当前状态的子状态
def get_successors(self):
successors = []
zero_index = self.state.index(0)
if zero_index >= 3:
new_state = self.state[:]
new_state[zero_index], new_state[zero_index - 3] = new_state[zero_index - 3], new_state[zero_index]
successors.append(EightPuzzleState(new_state, parent=self, action='up', depth=self.depth + 1, heuristic=self.get_heuristic(new_state)))
if zero_index % 3 != 0:
new_state = self.state[:]
new_state[zero_index], new_state[zero_index - 1] = new_state[zero_index - 1], new_state[zero_index]
successors.append(EightPuzzleState(new_state, parent=self, action='left', depth=self.depth + 1, heuristic=self.get_heuristic(new_state)))
if zero_index % 3 != 2:
new_state = self.state[:]
new_state[zero_index], new_state[zero_index + 1] = new_state[zero_index + 1], new_state[zero_index]
successors.append(EightPuzzleState(new_state, parent=self, action='right', depth=self.depth + 1, heuristic=self.get_heuristic(new_state)))
if zero_index < 6:
new_state = self.state[:]
new_state[zero_index], new_state[zero_index + 3] = new_state[zero_index + 3], new_state[zero_index]
successors.append(EightPuzzleState(new_state, parent=self, action='down', depth=self.depth + 1, heuristic=self.get_heuristic(new_state)))
return successors
# 获取当前状态的启发值
def get_heuristic(self, state):
heuristic = 0
for i in range(9):
if state[i] == 0:
continue
goal_row = state[i] // 3
goal_col = state[i] % 3
curr_row = i // 3
curr_col = i % 3
heuristic += abs(goal_row - curr_row) + abs(goal_col - curr_col)
return heuristic
# 判断当前状态是否为目标状态
def is_goal(self):
return self.state == [0, 1, 2, 3, 4, 5, 6, 7, 8]
# 定义A*算法函数
def astar(start_state):
frontier = []
heapq.heappush(frontier, start_state)
explored = set()
while frontier:
state = heapq.heappop(frontier)
if state.is_goal():
return state
explored.add(state)
for successor in state.get_successors():
if successor not in explored:
heapq.heappush(frontier, successor)
return None
# 测试代码
start_state = EightPuzzleState([1, 2, 0, 3, 4, 5, 6, 7, 8])
goal_state = EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8])
result = astar(start_state)
if result:
path = []
while result.parent:
path.append(result.action)
result = result.parent
path.reverse()
print(path)
else:
print('No solution found')
```
在上面的代码中,我们首先定义了一个`EightPuzzleState`类,用于表示八数码问题的状态。该类包含以下几个属性:
- `state`:当前状态的数字序列;
- `parent`:当前状态的父状态;
- `action`:从父状态到当前状态的动作;
- `depth`:当前状态的深度;
- `heuristic`:当前状态的启发值。
该类还包含以下几个方法:
- `__lt__`:重载小于号,用于定义状态的优先级;
- `__eq__`:重载等于号,用于判断状态是否相等;
- `__hash__`:重载哈希函数,用于将状态存储到集合中;
- `__repr__`:重载字符串函数,用于打印状态的数字序列;
- `get_successors`:获取当前状态的子状态;
- `get_heuristic`:获取当前状态的启发值;
- `is_goal`:判断当前状态是否为目标状态。
接着,我们定义了一个`astar`函数,用于实现A*算法。该函数使用优先队列来存储候选状态,并使用集合来存储已经扩展过的状态。在每一次迭代中,我们从优先队列中弹出优先级最高的状态,并将其加入到已扩展状态集合中。然后,我们遍历当前状态的所有子状态,并将未扩展过的子状态加入到优先队列中。如果当前状态为目标状态,则返回该状态;否则,继续迭代直到优先队列为空。
最后,我们使用上述代码解决了一个八数码问题,并输出了从初始状态到目标状态的路径。
阅读全文