将unsigned char *赋给结构体内的结构体

时间: 2023-08-03 17:05:05 浏览: 77
假设结构体的定义如下: ``` struct inner_example { unsigned char inner_data[5]; }; struct example { struct inner_example inner; }; ``` 可以通过以下方式将 unsigned char * 赋值给结构体内的结构体 inner_example 中的 inner_data 成员: ``` unsigned char *input_data = /* some input data */; struct example ex; memcpy(ex.inner.inner_data, input_data, 5); ``` 这里同样使用了 memcpy 函数将 input_data 的前 5 个字节复制到了 ex.inner.inner_data 数组中。需要注意的是,如果 input_data 的长度小于 5 个字节,那么可能会出现访问非法内存的错误。同时,如果需要给结构体中的多个内部结构体赋值,可以使用类似的方式,分别给每个内部结构体的成员赋值。
相关问题

将unsigned char *赋给结构体内的结构体的两个成员

假设结构体的定义如下: ``` struct inner_example { unsigned char inner_data1[5]; unsigned char inner_data2[5]; }; struct example { struct inner_example inner; }; ``` 可以通过以下方式将 unsigned char * 赋值给结构体内的结构体 inner_example 中的 inner_data1 和 inner_data2 成员: ``` unsigned char *input_data = /* some input data */; struct example ex; memcpy(ex.inner.inner_data1, input_data, 5); memcpy(ex.inner.inner_data2, input_data+5, 5); ``` 这里使用了两次 memcpy 函数,第一次将 input_data 的前 5 个字节复制到了 ex.inner.inner_data1 数组中,第二次将 input_data 的第 6 到第 10 个字节复制到了 ex.inner.inner_data2 数组中。需要注意的是,如果 input_data 的长度小于 10 个字节,那么可能会出现访问非法内存的错误。同时,如果需要给结构体中的多个内部结构体的成员赋值,可以使用类似的方式,分别给每个内部结构体的成员赋值。

将unsigned char *赋给结构体

假设结构体的定义如下: ``` struct example { unsigned char data[10]; }; ``` 那么可以通过以下方式将 unsigned char* 赋值给结构体的 data 成员: ``` unsigned char *input_data = /* some input data */; struct example ex; memcpy(ex.data, input_data, 10); ``` 这里使用了 memcpy 函数将 input_data 的前 10 个字节复制到了 ex.data 数组中。需要注意的是,如果 input_data 的长度小于 10 个字节,那么可能会出现访问非法内存的错误。

相关推荐

// Test.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 // #include <iostream> int main(char* filename, char* outputFilename) { int row, col; unsigned char fheadg[54]; char palette[1024]; FILE* fp; // 打开文件 fp = fopen(filename, "rb"); if (fp == NULL) { printf("Error: cannot open file.\n"); return -1; } // 读取位图文件头部结构体 if (fread(fheadg, sizeof(char), 54, fp) != 54) { printf("Error: invalid bitmap file.\n"); fclose(fp); return -1; } // 读取调色板数据 if (fread(palette, sizeof(char), 1024, fp) != 1024) { printf("Error: invalid bitmap file.\n"); fclose(fp); return -1; } // 获取图像的行数和列数 col = *(int*)&fheadg[18]; row = abs(*(int*)&fheadg[22]); // 分配内存并读取像素数据 unsigned char* image = (unsigned char*)malloc(row * col * sizeof(unsigned char)); fread(image, sizeof(unsigned char), row * col, fp); // 关闭文件 fclose(fp); // 转换为灰度图像 unsigned char* grayImage = (unsigned char*)malloc(row * col * sizeof(unsigned char)); ReadGrayImage(grayImage, image, row, col); // 写入灰度图像 WriteGraylmage(outputFilename, row, col, grayImage, fheadg, palette); // 释放内存空间 free(image); free(grayImage); return 0; } int ReadGrayImage(const char* FileName, int* Row, int* Col, unsigned char* Image, unsigned char* Fheadg, char* Pallette) { long Index; int k, i, j; FILE* ImageDataFile; errno_t err; if (err = fopen_s(&ImageDataFile, FileName, "rb")) return(0); for (i = 0; i < 54; i++) Fheadg[i] = fgetc(ImageDataFile); *Col = Fheadg[19] * 256 + Fheadg[18]; *Row = Fheadg[23] * 256 + Fheadg[22]; for (i = 0; i < 1024; i++) Pallette[i] = fgetc(ImageDataFile); k = (*Col) * 3 % 4; if (k == 4) k = 0; Index = 0; for (i = 0; i < *Row; i++) { for (j = 0; j < *Col; j++, Index++) Image[Index] = fgetc(ImageDataFile); for (j = 1; j <= k; j++) fgetc(ImageDataFile); } fclos

#include<stdio.h> #include<string.h> #include<stdlib.h> #include<ctype.h> #include<openssl/hmac.h> char *signature_calculate(char *json_obj, char *key){ unsigned char *key_byte = (unsigned char *)key; char *sorted_json = to_url_query(json_obj); unsigned char *dataddd = (unsigned char *)sorted_json; unsigned char *signature = HMAC(EVP_sha256(), key_byte, strlen(key), dataddd, strlen(dataddd), NULL, NULL); char hex_signature = malloc(2 * EVP_MAX_MD_SIZE + 1); for(int i=0; i<EVP_MAX_MD_SIZE; i++) { sprintf(&hex_signature[i2], "%02x", signature[i]); } return hex_signature; } typedef struct { char key[256]; char value[256]; } KeyValue; int compare(const void a, const void b) { return strcmp(((KeyValue)a)->key, ((KeyValue)b)->key); } char *sort_dict(KeyValue *array, int size) { // 对KeyValue数组按ASCII码升序排序 qsort(array, size, sizeof(KeyValue), compare); char *query_list = malloc(size * 256); int len=0; for(int i=0; i<size; i++) { if(strlen(array[i].value)==0){ // 如果值为空或者空字符串则不拼接 continue; } char *key = array[i].key; char *value = array[i].value; if(isalpha(value[0]) && isalnum(value[1]) && strcmp(value, "true")!=0 && strcmp(value, "false")!=0) { sprintf(&query_list[len], "%s=%s&", key, value); } else { sprintf(&query_list[len], "%s="%s"&", key, value); } len = strlen(query_list); } if(len>0) { query_list[len-1] = 0; } return query_list; } char *to_url_query(char *json, char *prefix){ // 将json字符串转换为URL键值对形式的字符串 int len = strlen(json); KeyValue *array = malloc(len * sizeof(KeyValue)); int i=0; int j=0; int level=0; char *key; // 处理嵌套字典的键名 while(i<len){ if(json[i]=='{' || json[i]=='['){ level++; i++; } else if(json[i]=='}' || json[i]==']'){ level--; i++; } else if(json[i]==','){ array[j].value[i-array[j].key] = 0; i++; j++; } else if(json[i]==':'){ key = array[j].key; array[j].value[0] = 0; i++; } else if(json[i]=='"' && level%2==0){ i++; int k=0; while(json[i]!='"') { array[j].value[k] = json[i]; i++; k++; } array[j].value[k] = 0; i++; } else if(json[i]!=',' && json[i]!=':' && json[i]!=' '){ array[j].key[i-j] = json[i]; i++; } else { i++; } } array[j].value[i-array[j].key] = 0; j++; char *sorted_json = sort_dict(array, j); char *query_list = malloc(strlen(sorted_json)+1); if(strlen(prefix)>0){ sprintf(query_list, "%s.%s", prefix, sorted_json); } else { strcpy(query_list, sorted_json); } free(array); free(sorted_json); return query_list; } 请对上面的代码添加注释

最新推荐

recommend-type

基于C#调用c++Dll结构体数组指针的问题详解

如果Dll文件中只包含一些基础类型,那这个问题可能可以被忽略,但是如果是组合类型(这个叫法也许不妥),如结构体、类类型等,在其中的成员变量的长度的申明正确与否将决定你对Dll文件调用的成败。 在C++中,...
recommend-type

Keil MDK-ARM各种数据类型占用的字节数 char short int float double

以上代码将分别赋值给变量a至g表示不同数据类型的字节数。 最后,为了方便代码的可读性和可移植性,可以定义相应的typedef,如: ```c typedef unsigned char uint8; typedef signed char int8; typedef unsigned ...
recommend-type

河北金融学院在广东2021-2024各专业最低录取分数及位次表.pdf

全国各大学在广东2021-2024各专业最低录取分数及位次表
recommend-type

AirKiss技术详解:无线传递信息与智能家居连接

AirKiss原理是一种创新的信息传输技术,主要用于解决智能设备与外界无物理连接时的网络配置问题。传统的设备配置通常涉及有线或无线连接,如通过路由器的Web界面输入WiFi密码。然而,AirKiss技术简化了这一过程,允许用户通过智能手机或其他移动设备,无需任何实际连接,就能将网络信息(如WiFi SSID和密码)“隔空”传递给目标设备。 具体实现步骤如下: 1. **AirKiss工作原理示例**:智能插座作为一个信息孤岛,没有物理连接,通过AirKiss技术,用户的微信客户端可以直接传输SSID和密码给插座,插座收到这些信息后,可以自动接入预先设置好的WiFi网络。 2. **传统配置对比**:以路由器和无线摄像头为例,常规配置需要用户手动设置:首先,通过有线连接电脑到路由器,访问设置界面输入运营商账号和密码;其次,手机扫描并连接到路由器,进行子网配置;最后,摄像头连接家庭路由器后,会自动寻找厂商服务器进行心跳包发送以保持连接。 3. **AirKiss的优势**:AirKiss技术简化了配置流程,减少了硬件交互,特别是对于那些没有显示屏、按键或网络连接功能的设备(如无线摄像头),用户不再需要手动输入复杂的网络设置,只需通过手机轻轻一碰或发送一条消息即可完成设备的联网。这提高了用户体验,降低了操作复杂度,并节省了时间。 4. **应用场景扩展**:AirKiss技术不仅适用于智能家居设备,也适用于物联网(IoT)场景中的各种设备,如智能门锁、智能灯泡等,只要有接收AirKiss信息的能力,它们就能快速接入网络,实现远程控制和数据交互。 AirKiss原理是利用先进的无线通讯技术,结合移动设备的便利性,构建了一种无需物理连接的设备网络配置方式,极大地提升了物联网设备的易用性和智能化水平。这种技术在未来智能家居和物联网设备的普及中,有望发挥重要作用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

交叉验证全解析:数据挖掘中的黄金标准与优化策略

![交叉验证全解析:数据挖掘中的黄金标准与优化策略](https://img-blog.csdnimg.cn/img_convert/eff0a03452b18f6b259f99cebef24bd9.png) # 1. 交叉验证的基本概念和重要性 ## 1.1 交叉验证的定义 交叉验证是一种统计方法,用于评估并改进机器学习模型的泛化能力。它通过将数据集分为几个小的“折”(或称为“子集”),然后迭代使用这些数据子集来训练和测试模型,从而得到模型性能的更准确估计。 ## 1.2 交叉验证的重要性 在机器学习过程中,我们通常面临一个重要的问题:模型可能对训练数据过度拟合,而不能很好地推广到新数据
recommend-type

在交换机上创建 VLAN10、VLAN20和VLAN30,将交换机 B 的 2-5 接口加入到 VLAN 10 中 用ensp写出配置命令

在交换机上配置VLAN并分配接口到特定的VLAN中,通常需要登录到交换机的命令行界面。以下是在华为交换机上使用eNSP(Enterprise Network Simulation Platform,企业网络模拟平台)模拟器进行VLAN配置的基本步骤和命令: 首先,进入系统视图: ``` system-view ``` 然后创建VLAN10、VLAN20和VLAN30: ``` vlan 10 vlan 20 vlan 30 ``` 接下来,将交换机B的2到5端口加入到VLAN10中,假设交换机B的接口编号为GigabitEthernet0/0/2至GigabitEthernet0/0/5
recommend-type

Hibernate主键生成策略详解

"Hibernate各种主键生成策略与配置详解" 在关系型数据库中,主键是表中的一个或一组字段,用于唯一标识一条记录。在使用Hibernate进行持久化操作时,主键的生成策略是一个关键的配置,因为它直接影响到数据的插入和管理。以下是Hibernate支持的各种主键生成策略的详细解释: 1. assigned: 这种策略要求开发者在保存对象之前手动设置主键值。Hibernate不参与主键的生成,因此这种方式可以跨数据库,但并不推荐,因为可能导致数据一致性问题。 2. increment: Hibernate会从数据库中获取当前主键的最大值,并在内存中递增生成新的主键。由于这个过程不依赖于数据库的序列或自增特性,它可以跨数据库使用。然而,当多进程并发访问时,可能会出现主键冲突,导致Duplicate entry错误。 3. hilo: Hi-Lo算法是一种优化的增量策略,它在一个较大的范围内生成主键,减少数据库交互。在每个session中,它会从数据库获取一个较大的范围,然后在内存中分配,降低主键碰撞的风险。 4. seqhilo: 类似于hilo,但它使用数据库的序列来获取范围,适合Oracle等支持序列的数据库。 5. sequence: 这个策略依赖于数据库提供的序列,如Oracle、PostgreSQL等,直接使用数据库序列生成主键,保证全局唯一性。 6. identity: 适用于像MySQL这样的数据库,它们支持自动增长的主键。Hibernate在插入记录时让数据库自动为新行生成主键。 7. native: 根据所连接的数据库类型,自动选择最合适的主键生成策略,如identity、sequence或hilo。 8. uuid: 使用UUID算法生成128位的唯一标识符,适用于分布式环境,无需数据库支持。 9. guid: 类似于uuid,但根据不同的实现可能会有所不同,通常在Windows环境下生成的是GUID字符串。 10. foreign: 通过引用另一个表的主键来生成当前表的主键,适用于关联实体的情况。 11. select: 在插入之前,通过执行SQL查询来获取主键值,这种方式需要开发者提供定制的SQL语句。 12. 注释方式配置: 可以通过在Java实体类的@Id和@GeneratedValue注解中指定generator属性来配置自定义的主键生成策略。 13. 小结: Hibernate的主键生成策略选择应基于数据库特性、性能需求以及是否需要跨数据库兼容等因素。在实际应用中,需要根据项目具体需求选择最适合的策略。 注意,合理选择主键生成策略对于数据库性能和数据一致性至关重要。例如,increment策略在多进程环境下可能会出现问题,而sequence和identity策略则更安全,但可能不适合所有数据库系统。因此,开发者应充分理解每种策略的优缺点,并结合实际情况作出决策。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【数据挖掘模型评估】:AUC-ROC曲线深度剖析及应用

![【数据挖掘模型评估】:AUC-ROC曲线深度剖析及应用](https://us.v-cdn.net/6030995/uploads/lithium_attachments/image/serverpage/image-id/197iD52A116307C7E332/roc.png) # 1. 数据挖掘模型评估基础 在数据挖掘领域,评估一个模型的性能是至关重要的环节。这不仅关系到模型是否能够满足预期任务的需求,而且还涉及到模型泛化能力的判定。传统上,模型的评估指标包括准确度、召回率、精确率等。然而,这些指标在面对不平衡数据集时可能会产生误导。因此,数据挖掘者需要更全面和深入的评估方法,而R