在stm32中voidLCD的初始化函数

时间: 2024-03-16 16:46:35 浏览: 18
在STM32中,LCD的初始化函数可能会因为具体的LCD驱动芯片而有所不同。以下是一种常见的STM32中LCD初始化函数的实现方式,供您参考: ```c void LCD_Init(void) { /* 初始化GPIO口和SPI接口 */ /* 发送初始化指令 */ /* 等待LCD初始化完成 */ } ``` 在具体的实现过程中,您需要根据自己使用的LCD驱动芯片,使用STM32的GPIO口和SPI接口进行连接。然后,您需要根据LCD驱动芯片的手册,发送初始化指令,以初始化LCD。最后,您需要等待LCD初始化完成之后,才能开始正常的LCD操作。
相关问题

在stm32中音乐盒voidLCD的初始化参考函数

以下是在STM32中使用音乐盒时,可能会用到的LCD初始化参考函数的实现方式: ```c void LCD_Init(void) { /* 初始化GPIO口和SPI接口 */ GPIO_InitTypeDef GPIO_InitStruct; SPI_HandleTypeDef spiHandle; /* 使能GPIO时钟 */ __HAL_RCC_GPIOA_CLK_ENABLE(); /* 使能SPI时钟 */ __HAL_RCC_SPI1_CLK_ENABLE(); /* 配置SPI SCK引脚 */ GPIO_InitStruct.Pin = GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* 配置SPI MOSI引脚 */ GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* 配置SPI CS引脚 */ GPIO_InitStruct.Pin = GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* 配置SPI接口 */ spiHandle.Instance = SPI1; spiHandle.Init.Mode = SPI_MODE_MASTER; spiHandle.Init.Direction = SPI_DIRECTION_1LINE; spiHandle.Init.DataSize = SPI_DATASIZE_8BIT; spiHandle.Init.CLKPolarity = SPI_POLARITY_LOW; spiHandle.Init.CLKPhase = SPI_PHASE_1EDGE; spiHandle.Init.NSS = SPI_NSS_SOFT; spiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; spiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB; spiHandle.Init.TIMode = SPI_TIMODE_DISABLE; spiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; spiHandle.Init.CRCPolynomial = 10; HAL_SPI_Init(&spiHandle); /* 发送初始化指令 */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET); HAL_SPI_Transmit(&spiHandle, (uint8_t*)LCD_INIT_CODE, sizeof(LCD_INIT_CODE), HAL_MAX_DELAY); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET); /* 等待LCD初始化完成 */ HAL_Delay(10); } ``` 在这个参考函数中,我们使用了GPIO口和SPI接口来连接LCD。具体来说,我们在GPIOA口的5、7号引脚上连接了SPI接口的SCK和MOSI信号,同时在GPIOB口的12号引脚上连接了SPI的CS信号。然后,我们使用STM32 HAL库提供的函数来初始化GPIO口和SPI接口,以及发送LCD的初始化指令。最后,我们等待LCD初始化完成之后,才能开始正常的LCD操作。请注意,这里的LCD初始化指令是一个示例,具体的指令需要根据您使用的LCD驱动芯片来确定。

STM32定时器的初始化函数

STM32定时器的初始化函数包括以下几个步骤: 1. 配置定时器的时钟源和分频系数。 2. 配置定时器的工作模式和计数模式。 3. 配置定时器的自动重载寄存器(ARR)和预分频器寄存器(PSC)的值,以确定定时器的计数周期和计数频率。 4. 配置定时器的输出比较模式(可选)和输出比较寄存器(CCR)的值,以确定定时器的输出信号。 以下是一个示例代码,用于初始化定时器2作为基本定时器,计数频率为84MHz/8400=10kHz,计数周期为10000,不使用输出比较模式: ```c #include "stm32f4xx.h" void TIM2_Init(void) { TIM_TimeBaseInitTypeDef tim_base_init; // 使能定时器2的时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // 配置定时器2的时钟源和分频系数 tim_base_init.TIM_ClockDivision = TIM_CKD_DIV1; tim_base_init.TIM_CounterMode = TIM_CounterMode_Up; tim_base_init.TIM_Prescaler = 8400 - 1; tim_base_init.TIM_RepetitionCounter = 0; tim_base_init.TIM_Period = 10000 - 1; TIM_TimeBaseInit(TIM2, &tim_base_init); // 启动定时器2 TIM_Cmd(TIM2, ENABLE); } ```

相关推荐

最新推荐

recommend-type

MDK下怎样才能让变量在复位时不被初始化

最近一个项目需要保存一下临时数据,而产品容易受干扰而...所以需要保存一下数据,那么只有在系统复位时候不再初始化变量即可。对应MDK(keil)来说是一个比较麻烦的问题。通过网络上找了大量资料和测试发现终于可以了。
recommend-type

如何在STM32中做超时检测?

请问有谁知道在STM32中如何做超时检测吗?目前STM32上有一个串口转RS485,挂了约50个节点。然后需要检测每个节点返回的命令是否超时。请问一下,如何来检测这个超时呢?
recommend-type

STM32 对内部FLASH读写接口函数

在STM32内部FLASH读写接口函数中,我们需要实现对内部FLASH的读写操作。这里我们可以使用两种函数:I2C_EE_BufferRead和I2C_EE_BufferWrite。下面我们将详细介绍这两个函数的实现原理和代码实现。 I2C_EE_Buffer...
recommend-type

STM32F103固件函数库用户手册(中文)

STM32F103固件函数库是针对基于ARM微控制器的32位STM32F101xx和STM32F103xx系列设计的一个全面的软件包,旨在简化用户对这些微控制器外设的使用。这个库包含了一系列的程序、数据结构和宏,覆盖了所有外设的功能特性...
recommend-type

Stm32项目中遇到的一些问题以及解决办法

通过分析 STM32 项目中遇到的问题,我们可以总结出一些经验,例如在 USART 中断接收数据时,需要正确地使用 USART_GetFlagStatus 函数来判断 RXNE 状态;在调试中,需要选择正确的显示方式,例如 16 进制方式;在...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。