反向学习差分进化算法matlab
时间: 2023-09-09 21:09:45 浏览: 134
反向学习差分进化算法(BLDE)是一种基于差分进化算法(DE)的优化算法,用于求解非线性优化问题。它在DE的基础上,引入了反向学习的思想,通过学习历史最优解的信息来指导搜索过程,提高了优化的效率和准确性。
以下是一个使用MATLAB实现BLDE算法的示例代码:
```matlab
function [x,fval] = BLDE(fun,lb,ub,options)
% BLDE: Backward Learning Differential Evolution Algorithm
% fun: Fitness function
% lb: Lower bound of variables
% ub: Upper bound of variables
% options: Algorithmic options
% Initialize parameters
N = options.PopulationSize; % Population size
D = length(lb); % Dimension of problem
F = options.Factor; % Scaling factor
CR = options.CR; % Crossover probability
maxGen = options.MaxGenerations; % Maximum number of generations
tolFun = options.FunctionTolerance; % Function tolerance
tolX = options.StepTolerance; % Step tolerance
tolStall = options.StallGenerations; % Number of generations to check stall
stallGen = 0; % Number of generations with no improvement
bestX = []; % Best solution
bestF = inf; % Best fitness
% Initialize population
X = repmat(lb,N,1) + rand(N,D).*(repmat(ub-lb,N,1));
FV = feval(fun,X);
% Evolution loop
for i = 1:maxGen
% Mutation
V = X(randperm(N,3),:) + F*(X(randperm(N,3),:) - X(randperm(N,3),:));
V = max(min(V,ub),lb);
j = randi(D,N,1);
for k = 1:N
V(k,j(k)) = X(k,j(k));
end
% Crossover
U = X;
j = randi(D,N,1);
for k = 1:N
for l = 1:D
if rand < CR || l == j(k)
U(k,l) = V(k,l);
end
end
end
% Selection
FU = feval(fun,U);
idx = FU < FV;
X(idx,:) = U(idx,:);
FV(idx) = FU(idx);
% Update best solution
[minF,idx] = min(FV);
if minF < bestF
bestF = minF;
bestX = X(idx,:);
stallGen = 0;
else
stallGen = stallGen + 1;
end
% Check termination criteria
if bestF < tolFun || max(abs(bestX-X(idx,:))) < tolX || stallGen == tolStall
break;
end
end
% Return best solution
x = bestX;
fval = bestF;
end
```
在这个代码中,`fun`是需要优化的目标函数,`lb`和`ub`分别是变量的下界和上界,`options`包含算法的参数和选项。该函数返回最优解`x`和最优解对应的函数值`fval`。
如果需要使用该函数求解目标函数,可以定义一个函数句柄并传递给`BLDE`函数,例如:
```matlab
fun = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
lb = [-5,-5];
ub = [5,5];
options.PopulationSize = 20;
options.Factor = 0.8;
options.CR = 0.9;
options.MaxGenerations = 100;
options.FunctionTolerance = 1e-6;
options.StepTolerance = 1e-6;
options.StallGenerations = 20;
[x,fval] = BLDE(fun,lb,ub,options);
```
阅读全文