Python定义DDPG类
时间: 2023-11-19 22:00:06 浏览: 142
DDPG.py
回答:
DDPG是一种强化学习算法,全称是Deep Deterministic Policy Gradient。Python中可以定义一个DDPG类,代码如下:
```
import tensorflow as tf
import numpy as np
class DDPG:
def __init__(self, state_dim, action_dim, action_bound, actor_lr, critic_lr, gamma, tau):
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.gamma = gamma
self.tau = tau
# define actor and critic networks
self.actor_network = self._build_actor_network()
self.critic_network = self._build_critic_network()
# define target actor and critic networks
self.target_actor_network = self._build_actor_network()
self.target_critic_network = self._build_critic_network()
# initialize target actor and critic networks
self._update_target_network(tf.ones([1, self.state_dim]), tf.ones([1, self.action_dim]))
# define actor and critic optimizers
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=self.actor_lr)
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=self.critic_lr)
def _build_actor_network(self):
# TODO: define actor network architecture
pass
def _build_critic_network(self):
# TODO: define critic network architecture
pass
@tf.function
def _update_target_network(self, state, action):
# update target actor network
target_actor_variables = self.target_actor_network.trainable_variables
actor_variables = self.actor_network.trainable_variables
for target_actor_var, actor_var in zip(target_actor_variables, actor_variables):
target_actor_var.assign((1 - self.tau) * target_actor_var + self.tau * actor_var)
# update target critic network
target_critic_variables = self.target_critic_network.trainable_variables
critic_variables = self.critic_network.trainable_variables
for target_critic_var, critic_var in zip(target_critic_variables, critic_variables):
target_critic_var.assign((1 - self.tau) * target_critic_var + self.tau * critic_var)
@tf.function
def train(self, state, action, reward, next_state, done):
with tf.GradientTape() as tape:
target_next_action = self.target_actor_network(next_state)
y = reward + (1 - done) * self.gamma * self.target_critic_network([next_state, target_next_action])
q = self.critic_network([state, action])
critic_loss = tf.reduce_mean(tf.square(y - q))
critic_gradients = tape.gradient(critic_loss, self.critic_network.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_gradients, self.critic_network.trainable_variables))
with tf.GradientTape() as tape:
actor_loss = -tf.reduce_mean(self.critic_network([state, self.actor_network(state)]))
actor_gradients = tape.gradient(actor_loss, self.actor_network.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_gradients, self.actor_network.trainable_variables))
self._update_target_network(state, action)
def act(self, state):
return self.actor_network(tf.reshape(state, [1, self.state_dim]))[0]
def save_weights(self, actor_path, critic_path):
self.actor_network.save_weights(actor_path)
self.critic_network.save_weights(critic_path)
def load_weights(self, actor_path, critic_path):
self.actor_network.load_weights(actor_path)
self.critic_network.load_weights(critic_path)
```
这个DDPG类可以通过传入不同的参数来构建不同的DDPG网络,包括状态维度、动作维度、动作边界、学习率、折扣因子和软更新参数等。在这个类中,可以定义actor和critic网络,以及它们的目标网络。在训练过程中,可以根据DDPG算法的公式更新网络参数,并且实现软更新等功能。最后,可以保存和载入网络参数,以便在需要时重新使用。
阅读全文