swim transformer原理
时间: 2023-10-02 17:07:31 浏览: 125
Swim Transformer是一种特别为视觉领域设计的分层Transformer结构。它采用滑动窗口和分层表示的两大特性。滑动窗口允许在局部不重叠的窗口中计算自注意力,并允许跨窗口连接。而分层结构则允许模型适应不同尺度的图像,并且计算复杂度与图像大小呈线性关系。因此,它被称为一种披着Transformer皮的CNN。Swim Transformer以Vision Transformer(ViT)为起点,借鉴了ResNet的优点,从局部到全局逐步扩大感受野,设计成一种适用于计算机视觉任务的通用主干网络。它可以应用于图像分类、图像分割、目标检测等一系列视觉下游任务。
相关问题
swim transformer
Swim Transformer 是一种基于 Transformer 模型的深度学习架构,用于处理水下图像和视频数据。它是由加拿大滑铁卢大学的研究团队开发的,旨在解决水下图像处理中存在的挑战,例如水下图像的模糊性、噪声、颜色失真等问题。
Swim Transformer 架构利用了 Transformer 的自注意力机制,以及新的空间位置编码方案和深度可分离卷积来处理水下图像数据。与传统的卷积神经网络相比,Swim Transformer 在水下图像处理任务中表现出更好的性能,包括更高的精度和更快的收敛速度。
Swim Transformer 的应用包括水下机器人、水下监控、水下探测等领域。
Swim Transformer
Swim Transformer是一种特为视觉领域设计的分层Transformer结构。它具有滑动窗口和分层表示的特点。滑动窗口在局部不重叠的窗口中计算自注意力,并允许窗口之间的连接。分层结构允许模型适应不同尺度的图像,并且计算复杂度与图像大小成线性关系。因此,Swin Transformer被称为一种披着Transformer皮的CNN。它借鉴了CNN的分层结构,不仅适用于分类任务,还可以扩展到下游任务,如图像分割和目标检测等计算机视觉任务。该模型以Vision Transformer(VIT)为起点,吸收了ResNet的优点,并通过逐步扩大感受野的方式设计了Transformer。Swim Transformer的成功并非偶然,而是基于积累与沉淀。
论文题目:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
论文地址:https://arxiv.org/abs/2103.14030
Swim Transformer的每个块(Block)有两种结构,分别是W-MSA结构和SW-MSA结构。这两种结构是成对使用的,先使用W-MSA结构,然后再使用SW-MSA结构。因此,堆叠Swim Transformer Block的次数是偶数。
阅读全文