swim transformer模型
时间: 2023-10-28 13:07:14 浏览: 107
Swin Transformer是一种基于移动窗口的层级式的Vision Transformer。与传统的Transformer模型不同,Swin Transformer使用了一种新的分块策略,将输入图像分成多个小块,然后在这些小块上进行自注意力计算。这种分块策略可以减少计算量,同时也可以提高模型的感受野。此外,Swin Transformer还引入了一种新的层级式的特征金字塔结构,使得模型可以在不同的尺度上提取特征。通过这些改进,Swin Transformer在多个计算机视觉任务上都取得了优秀的表现。
相关问题
swim transformer
Swim Transformer 是一种基于 Transformer 模型的深度学习架构,用于处理水下图像和视频数据。它是由加拿大滑铁卢大学的研究团队开发的,旨在解决水下图像处理中存在的挑战,例如水下图像的模糊性、噪声、颜色失真等问题。
Swim Transformer 架构利用了 Transformer 的自注意力机制,以及新的空间位置编码方案和深度可分离卷积来处理水下图像数据。与传统的卷积神经网络相比,Swim Transformer 在水下图像处理任务中表现出更好的性能,包括更高的精度和更快的收敛速度。
Swim Transformer 的应用包括水下机器人、水下监控、水下探测等领域。
Swim Transformer
Swim Transformer是一种特为视觉领域设计的分层Transformer结构。它具有滑动窗口和分层表示的特点。滑动窗口在局部不重叠的窗口中计算自注意力,并允许窗口之间的连接。分层结构允许模型适应不同尺度的图像,并且计算复杂度与图像大小成线性关系。因此,Swin Transformer被称为一种披着Transformer皮的CNN。它借鉴了CNN的分层结构,不仅适用于分类任务,还可以扩展到下游任务,如图像分割和目标检测等计算机视觉任务。该模型以Vision Transformer(VIT)为起点,吸收了ResNet的优点,并通过逐步扩大感受野的方式设计了Transformer。Swim Transformer的成功并非偶然,而是基于积累与沉淀。
论文题目:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
论文地址:https://arxiv.org/abs/2103.14030
Swim Transformer的每个块(Block)有两种结构,分别是W-MSA结构和SW-MSA结构。这两种结构是成对使用的,先使用W-MSA结构,然后再使用SW-MSA结构。因此,堆叠Swim Transformer Block的次数是偶数。
阅读全文