解释代码warp_i1 = self.Resample2d(frame, flownetfusion_flow)
时间: 2024-05-21 11:10:27 浏览: 212
这段代码的作用是使用光流场对输入帧进行插值运算,将当前帧映射到下一帧的位置。
具体地,代码中的`Resample2d`函数是一个二维插值函数,它的输入参数是当前帧和光流场,输出结果是插值后的帧。其中,`frame`是当前帧的像素矩阵,`flownetfusion_flow`是由光流算法计算得到的光流场,表示当前帧中每个像素点在下一帧中的位置。
通过调用`Resample2d`函数,将当前帧按照光流场中的位移进行插值,得到新的帧。这个新的帧可以看作是在下一帧中的“预测”帧,可以用来和下一帧进行比较,从而计算光流误差并更新光流场。
相关问题
def forward(self, x, state=None, flow=None, mode='bilinear'): # pylint: disable=unused-argument, arguments-differ # Check size assert len(x.size()) == 5, 'Input tensor must be BxTxCxHxW.' b, timesteps, c, h, w = x.size() assert c == self.input_size, f'feature sizes must match, got input {c} for layer with size {self.input_size}' # recurrent layers rnn_output = [] rnn_state = torch.zeros(b, self.hidden_size, h, w, device=x.device) if state is None else state for t in range(timesteps): x_t = x[:, t] if flow is not None: rnn_state = warp_features(rnn_state, flow[:, t], mode=mode) # propagate rnn state rnn_state = self.gru_cell(x_t, rnn_state) rnn_output.append(rnn_state) # reshape rnn output to batch tensor return torch.stack(rnn_output, dim=1)这段代码的计算过程
这段代码实现了一个带有 GRU 循环神经网络的前向传播过程。输入张量 x 的维度为 BxTxCxHxW,其中 B 是批大小,T 是时间步数,C 是通道数,H 和 W 分别是张量的高度和宽度。该函数首先会检查输入张量的维度是否正确。
接下来,函数会初始化 GRU 循环神经网络的状态 rnn_state。如果输入参数 state 不为空,则将其作为初始状态;否则,将状态初始化为全零张量。
接着,函数会遍历时间步,每次取出输入张量 x 中的一个时间步 x_t。如果输入参数 flow 不为空,则使用 warp_features 函数对 rnn_state 进行变形,变形的方式由参数 mode 决定。
然后,函数将 x_t 和 rnn_state 作为 GRU 循环神经网络的输入,计算得到 rnn_state。将 rnn_state 添加到 rnn_output 列表中。
最后,函数将 rnn_output 列表中的张量沿着时间步维度进行堆叠,得到输出张量。输出张量的维度为 BxTxCxHxW。
这段代码什么意思def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))
这段代码是一个函数,用于将一张人脸图像进行三维重建并生成该人脸在二维图像上的 UV 位置图。具体步骤如下:
1. 加载人脸图像和拟合参数。
2. 生成人脸三维模型,并进行变换,得到变换后的人脸模型顶点位置。
3. 根据人脸关键点进行裁剪,得到人脸区域的图像,并记录变换参数。
4. 在 UV 空间中渲染人脸模型,并生成 UV 位置图。
5. 保存裁剪后的图像和 UV 位置图。
其中,变换参数包括旋转、平移、缩放等。UV 位置图是将人脸模型在 UV 空间中的位置映射到二维图像上的一张纹理图。
阅读全文