set2={num for num in range(1,15) if num%3==0} print(len(set2))

时间: 2024-02-09 18:07:04 浏览: 46
这段代码会输出结果为2。首先,`{num for num in range(1,15) if num%3==0}`是一个列表推导式,用于生成一个包含1到14中所有能够被3整除的数的集合。因为有3和9两个数满足条件,所以最终生成的集合中有两个元素。而`len(set2)`则用于输出集合中元素的个数,即2。
相关问题

nums=set() for i in range(1,6): for j in range(1,6): for x in range(1,6): for y in range(1,6): for z in range(1,6): if (i!=j) and (i!=x) and (i!=y) and (i!=z) and (j!=x)\ and (j!=y) and (j!=z) and (x!=y) and (x!=z) and (y!=z): num=10000*i+1000*j+100*x+10*y+1*z nums.add(num) a=len(nums) print("%5d"%(a),sorted(sums,reverse=True)) 帮我看一下这些代码 哪里错了

在代码中,set()应该写成nums=set()。另外,最后一行的sums应该改为nums。修改后的代码如下: ```python nums = set() for i in range(1, 6): for j in range(1, 6): for x in range(1, 6): for y in range(1, 6): for z in range(1, 6): if (i != j) and (i != x) and (i != y) and (i != z) and (j != x) and (j != y) and (j != z) and (x != y) and (x != z) and (y != z): num = 10000 * i + 1000 * j + 100 * x + 10 * y + 1 * z nums.add(num) print("%5d"%(len(nums)), sorted(nums, reverse=True)) ``` 注意到代码中的sums也应该改为nums。

print('每一类数据及其样本点数量为:') d={} n=[] num=[] for i in range(len(t_train)): d[t_train[i]]=d.setdefault(t_train[i],0)+1 for j in sorted(d): n.append((j,d[j])) num.append(d[j]) print(n) arr=np.zeros((10,784)) for t in range(10): for k in range(len(t_train)): if t_train[k]==t: arr[t]=arr[t]+x_train[k] else: continue arr[t]=arr[t]/num[t] plt.figure() for m in range(1,11): plt.subplot(3,4,m) a=np.reshape(arr[m-1],(28,28)) gray_img=a plt.imshow(gray_img,cmap='gray') 每行代码的解释

这段代码的作用是分析和可视化MNIST数据集中每个类别的样本,并计算每个类别的平均图像。 1. `d={}`:定义一个空字典d用于存储每个类别的出现次数。 2. `n=[]` 和 `num=[]`:定义两个空列表,用于存储每个类别的名称和样本数量。 3. `for i in range(len(t_train)):`:遍历训练集中的每个样本。 4. `d[t_train[i]]=d.setdefault(t_train[i],0)+1`:将该样本的类别作为字典d的键,如果该键不存在则将其值设为0,然后将其值加1。 5. `for j in sorted(d):`:按照键的升序遍历字典d中的每个键。 6. `n.append((j,d[j]))` 和 `num.append(d[j])`:将该类别的名称和样本数量分别添加到列表n和num中。 7. `arr=np.zeros((10,784))`:创建一个10行784列的零矩阵arr,用于存储每个类别的平均图像。 8. `for t in range(10):`:遍历0到9的所有数字。 9. `for k in range(len(t_train)):`:遍历训练集中的每个样本。 10. `if t_train[k]==t:`:如果该样本的类别与当前数字相同。 11. `arr[t]=arr[t]+x_train[k]`:将该样本的像素值累加到arr的第t行中。 12. `else: continue`:如果该样本的类别与当前数字不同,则跳过该样本。 13. `arr[t]=arr[t]/num[t]`:计算第t行的平均像素值,得到该数字的平均图像。 14. `plt.figure()`:创建一个新的图形窗口。 15. `for m in range(1,11):`:遍历1到10的所有数字。 16. `plt.subplot(3,4,m)`:将该数字的子图添加到图形窗口的3行4列的网格中的第m个位置。 17. `a=np.reshape(arr[m-1],(28,28))`:将arr的第m-1行重新构造为28x28的矩阵a,表示该数字的平均图像。 18. `gray_img=a`:将a赋值给gray_img,表示该图像为灰度图像。 19. `plt.imshow(gray_img,cmap='gray')`:将该图像显示在当前子图中,使用灰度色彩映射。

相关推荐

import Astar import heapq start_cor = (19, 0) waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) def distance(_from, _to): x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(waypoints) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(waypoints[i], waypoints[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist start = 0 end = n - 1 distances = [[float('inf')] * (n + 1) for _ in range(n)] visited = set() heap = [(0, 0, start)] while heap: (dist, num_visited, current) = heapq.heappop(heap) if current == end and num_visited == 8: break if (current, num_visited) in visited: continue visited.add((current, num_visited)) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0: new_num_visited = num_visited if neighbor in range(start + 1, end) and (current not in range(start + 1, end)) and num_visited < 8: new_num_visited += 1 new_distance = dist + weight if new_distance < distances[neighbor][new_num_visited]: distances[neighbor][new_num_visited] = new_distance heapq.heappush(heap, (new_distance, new_num_visited, neighbor)) min_dist = float('inf') min_num_visited = 8 for i in range(8): if distances[end][i] < min_dist: min_dist = distances[end][i] min_num_visited = i path = [end] current = end num_visited = min_num_visited for i in range(len(waypoints), 0, -1): if current in range(i): num_visited -= 1 for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and (neighbor, num_visited) in visited and distances[neighbor][num_visited] + weight == \ distances[current][num_visited]: path.append(neighbor) current = neighbor break path.reverse() print(f"The optimal path from start to end through the 8 waypoints is: {path}") print(f"The total distance is: {distances[end][min_num_visited]}")

import pandas as pd from itertools import combinations # 读取数据集 data = pd.read_csv('groceries.csv', header=None) transactions = data.values.tolist() # 设定支持度和置信度的阈值 min_support = 0.01 min_confidence = 0.5 # 生成频繁1项集 item_count = {} for transaction in transactions: for item in transaction: if item in item_count: item_count[item] += 1 else: item_count[item] = 1 num_transactions = len(transactions) freq_1_itemsets = [] for item, count in item_count.items(): support = count / num_transactions if support >= min_support: freq_1_itemsets.append([item]) # 生成频繁项集和关联规则 freq_itemsets = freq_1_itemsets[:] for k in range(2, len(freq_1_itemsets) + 1): candidates = [] for itemset in freq_itemsets: for item in freq_1_itemsets: if item[0] not in itemset: candidate = itemset + item if candidate not in candidates: candidates.append(candidate) freq_itemsets_k = [] for candidate in candidates: count = 0 for transaction in transactions: if set(candidate).issubset(set(transaction)): count += 1 support = count / num_transactions if support >= min_support: freq_itemsets_k.append(candidate) freq_itemsets += freq_itemsets_k # 生成关联规则 for itemset in freq_itemsets_k: for i in range(1, len(itemset)): for subset in combinations(itemset, i): antecedent = list(subset) consequent = list(set(itemset) - set(subset)) support_antecedent = item_count[antecedent[0]] / num_transactions for item in antecedent[1:]: support_antecedent = min(support_antecedent, item_count[item] / num_transactions) confidence = count / (support_antecedent * num_transactions) if confidence >= min_confidence: print(antecedent, '->', consequent, ':', confidence)完善这段代码

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

import jieba import math import re from collections import Counter # 读入两个txt文件存入s1,s2字符串中 s1 = open('1.txt', 'r').read() s2 = open('2.txt', 'r').read() # 利用jieba分词与停用词表,将词分好并保存到向量中 stopwords = [] fstop = open('stopwords.txt', 'r', encoding='utf-8') for eachWord in fstop: eachWord = re.sub("\n", "", eachWord) stopwords.append(eachWord) fstop.close() s1_cut = [i for i in jieba.cut(s1, cut_all=True) if (i not in stopwords) and i != ''] s2_cut = [i for i in jieba.cut(s2, cut_all=True) if (i not in stopwords) and i != ''] # 使用TF-IDF算法调整词频向量中每个词的权重 def get_tf_idf(word, cut_list, cut_code_list, doc_num): tf = cut_list.count(word) df = sum(1 for cut_code in cut_code_list if word in cut_code) idf = math.log(doc_num / df) return tf * idf word_set = list(set(s1_cut).union(set(s2_cut))) doc_num = 2 # 计算TF-IDF值并保存到向量中 s1_cut_tfidf = [get_tf_idf(word, s1_cut, [s1_cut, s2_cut], doc_num) for word in word_set] s2_cut_tfidf = [get_tf_idf(word, s2_cut, [s1_cut, s2_cut], doc_num) for word in word_set] # 获取TF-IDF值最高的前k个词 k = 10 s1_cut_topk = [word_set[i] for i in sorted(range(len(s1_cut_tfidf)), key=lambda x: s1_cut_tfidf[x], reverse=True)[:k]] s2_cut_topk = [word_set[i] for i in sorted(range(len(s2_cut_tfidf)), key=lambda x: s2_cut_tfidf[x], reverse=True)[:k]] # 使用前k个高频词的词频向量计算余弦相似度 s1_cut_code = [s1_cut.count(word) for word in s1_cut_topk] s2_cut_code = [s2_cut.count(word) for word in s2_cut_topk] sum = 0 sq1 = 0 sq2 = 0 for i in range(len(s1_cut_code)): sum += s1_cut_code[i] * s2_cut_code[i] sq1 += pow(s1_cut_code[i], 2) sq2 += pow(s2_cut_code[i], 2) try: result = round(float(sum) / (math.sqrt(sq1) * math.sqrt(sq2)), 3) except ZeroDivisionError: result = 0.0 print("\n余弦相似度为:%f" % result)

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

最新推荐

recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-数据结构-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-数据结构-内含源码和说明书.zip
recommend-type

java 游戏飞翔的小鸟

java 制作游戏 飞翔的小鸟
recommend-type

setuptools-25.3.0.zip

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这