给下面代码加上注释trans_mat = [] emit_mat = [] hidden_state = ["B", "M", "E", "S"] for item in init_trans_mat: trans_mat.append(np.array(list(item.values()))) for i in hidden_state: emit_mat.append(np.array(list(init_emit_mat.loc[i]))) emit_mat = np.array(emit_mat).reshape(4,-1)
时间: 2024-03-11 10:46:34 浏览: 59
# 初始化转移矩阵和发射矩阵为空列表
trans_mat = []
emit_mat = []
# 定义隐藏状态列表
hidden_state = ["B", "M", "E", "S"]
# 循环遍历初始转移矩阵
for item in init_trans_mat:
# 将字典的值转换为数组,并添加到转移矩阵中
trans_mat.append(np.array(list(item.values())))
# 循环遍历隐藏状态列表
for i in hidden_state:
# 获取对应的发射概率,并将其转换为数组
emit_prob = np.array(list(init_emit_mat.loc[i]))
# 将发射概率数组添加到发射矩阵中
emit_mat.append(emit_prob)
# 将发射矩阵转换为二维数组,并重置其形状为(4, -1)
emit_mat = np.array(emit_mat).reshape(4,-1)
相关问题
if __name__ == "__main__": BMES = [] print("正在读取本地模型矩阵...") with open(r'01/init_mat.pkl', "rb") as f0: init_mat = np.array(list(pickle.load(f0).values())) with open(r'01/trans_mat.pkl', "rb") as f1: init_trans_mat = np.array(list(pickle.load(f1).values())) with open(r'01/emit_mat.pkl', "rb") as f2: init_emit_mat = pickle.load(f2) catalog = list(init_emit_mat) trans_mat = [] emit_mat = [] hidden_state = ["B", "M", "E", "S"] for item in init_trans_mat: trans_mat.append(np.array(list(item.values()))) for i in hidden_state: emit_mat.append(np.array(list(init_emit_mat.loc[i]))) emit_mat = np.array(emit_mat).reshape(4,-1) print("读取模型矩阵成功!") print("目前模型的汉字库",catalog)请给这段代码的每行代码加上详细注释
```
if __name__ == "__main__":
# 定义 BMES 列表
BMES = []
# 打印提示语句
print("正在读取本地模型矩阵...")
# 读取模型中的初始概率矩阵 init_mat
with open(r'01/init_mat.pkl', "rb") as f0:
init_mat = np.array(list(pickle.load(f0).values()))
# 读取模型中的状态转移矩阵 init_trans_mat
with open(r'01/trans_mat.pkl', "rb") as f1:
init_trans_mat = np.array(list(pickle.load(f1).values()))
# 读取模型中的发射概率矩阵 init_emit_mat 和汉字库 catalog
with open(r'01/emit_mat.pkl', "rb") as f2:
init_emit_mat = pickle.load(f2)
catalog = list(init_emit_mat)
# 定义转移矩阵 trans_mat 和发射矩阵 emit_mat
trans_mat = []
emit_mat = []
# 定义隐状态集合
hidden_state = ["B", "M", "E", "S"]
# 将 init_trans_mat 转化为列表形式
for item in init_trans_mat:
trans_mat.append(np.array(list(item.values())))
# 将 init_emit_mat 中的每个状态的发射概率转化为列表形式
for i in hidden_state:
emit_mat.append(np.array(list(init_emit_mat.loc[i])))
# 将发射矩阵 emit_mat 转化为 NumPy 数组形式
emit_mat = np.array(emit_mat).reshape(4,-1)
# 打印提示语句和汉字库
print("读取模型矩阵成功!")
print("目前模型的汉字库",catalog)
```
这段代码的作用是读取本地保存的隐马尔可夫模型(HMM)的参数矩阵,并将其转化为程序中可用的格式。
首先,定义了一个 BMES 列表。接下来,通过打开三个文件,分别读取了初始概率矩阵 init_mat、状态转移矩阵 init_trans_mat 和发射概率矩阵 init_emit_mat,并将这些数据转化为 NumPy 数组或列表形式存储(其中,init_trans_mat 中的每个元素是一个包含状态转移概率的字典)。此外,还提取了 init_emit_mat 中的“汉字库” catalog,即所有可能出现的汉字。
接下来,将 init_trans_mat 转化为列表形式 trans_mat,其中每个元素是一个 NumPy 数组,表示某个状态到其他状态的转移概率。再将 init_emit_mat 中的每个状态的发射概率转化为列表形式 emit_mat,其中每个元素也是一个 NumPy 数组,表示某个状态发射某个汉字的概率。最后,将 emit_mat 转化为 NumPy 数组形式,同时打印出汉字库 catalog 和提示语句。
请帮我详细解释每一行代码的意思if __name__ == "__main__": BMES = [] print("正在读取本地模型矩阵...") with open(r'mat_pickle/init_mat.pkl', "rb") as f0: init_mat = np.array(list(pickle.load(f0).values())) with open(r'mat_pickle/trans_mat.pkl', "rb") as f1: init_trans_mat = np.array(list(pickle.load(f1).values())) with open(r'mat_pickle/emit_mat.pkl', "rb") as f2: init_emit_mat = pickle.load(f2) catalog = list(init_emit_mat) trans_mat = [] emit_mat = [] hidden_state = ["B", "M", "E", "S"] for item in init_trans_mat: trans_mat.append(np.array(list(item.values()))) for i in hidden_state: emit_mat.append(np.array(list(init_emit_mat.loc[i]))) emit_mat = np.array(emit_mat).reshape(4,-1) print("读取模型矩阵成功!") print("目前模型的汉字库",catalog) while(1): new_sentence = input("请输入你要分词的句子(如:商品和货币)输入0结束分词功能:") if (new_sentence == '0'): print("输入结束!") break state_s = [0,1,2,3] original = [catalog.index(i) for i in new_sentence] result = compute(original, state_s, init_mat, trans_mat, emit_mat) answer = solve_tag(result,new_sentence) print("分词的结果为:") for item in answer: print(item,end='') print("\n")
这段代码是一个 Python 脚本,主要用于读取预训练模型(HMM模型)并进行分词。下面是每一行代码的解释:
```python
if __name__ == "__main__":
```
这行代码用于判断当前脚本是不是被直接运行的(而非被导入的)。如果是被直接运行的,则下面的代码块会被执行。
```python
BMES = []
```
这行代码定义了一个空列表。
```python
print("正在读取本地模型矩阵...")
```
这行代码用于在控制台输出一条提示信息。
```python
with open(r'mat_pickle/init_mat.pkl', "rb") as f0:
init_mat = np.array(list(pickle.load(f0).values()))
```
这行代码用于从文件 `init_mat.pkl` 中读取 HMM 模型的初始概率矩阵,并将其转换为 numpy 数组格式。`with open()` 语句用于打开文件并自动关闭,`pickle.load()` 用于将二进制文件反序列化成 Python 对象。
```python
with open(r'mat_pickle/trans_mat.pkl', "rb") as f1:
init_trans_mat = np.array(list(pickle.load(f1).values()))
```
这行代码用于从文件 `trans_mat.pkl` 中读取 HMM 模型的转移概率矩阵,并将其转换为 numpy 数组格式。
```python
with open(r'mat_pickle/emit_mat.pkl', "rb") as f2:
init_emit_mat = pickle.load(f2)
catalog = list(init_emit_mat)
```
这行代码用于从文件 `emit_mat.pkl` 中读取 HMM 模型的发射概率矩阵,并将其转换为 pandas DataFrame 格式。同时,`catalog` 变量记录了汉字库中的所有汉字。
```python
trans_mat = []
emit_mat = []
hidden_state = ["B", "M", "E", "S"]
for item in init_trans_mat:
trans_mat.append(np.array(list(item.values())))
for i in hidden_state:
emit_mat.append(np.array(list(init_emit_mat.loc[i])))
emit_mat = np.array(emit_mat).reshape(4,-1)
```
这段代码将 HMM 模型的转移概率矩阵和发射概率矩阵转换成了 numpy 数组格式,其中 `trans_mat` 是一个 4x4 的矩阵,表示 HMM 模型的状态转移矩阵;`emit_mat` 是一个 4xN 的矩阵,表示 HMM 模型的发射矩阵。`hidden_state` 变量定义了 HMM 模型的四种状态。
```python
print("读取模型矩阵成功!")
print("目前模型的汉字库",catalog)
```
这两行代码分别用于在控制台输出读取模型矩阵成功的提示信息和汉字库中的所有汉字。
```python
while(1):
new_sentence = input("请输入你要分词的句子(如:商品和货币)输入0结束分词功能:")
if (new_sentence == '0'):
print("输入结束!")
break
state_s = [0,1,2,3]
original = [catalog.index(i) for i in new_sentence]
result = compute(original, state_s, init_mat, trans_mat, emit_mat)
answer = solve_tag(result,new_sentence)
print("分词的结果为:")
for item in answer:
print(item,end='')
print("\n")
```
这段代码用于进行分词。程序会循环等待用户输入要分词的句子,直到用户输入 `0` 结束程序。`state_s` 变量定义了可能的状态,`original` 变量是将输入的句子转化为了汉字库中的编号。`compute()` 函数用于计算句子的状态序列,`solve_tag()` 函数用于将状态序列转化为分词结果。最后,程序会在控制台输出分词结果。
阅读全文