/**/#define EXTBOT_SET_GPIO_OUT 0x01

时间: 2023-08-31 14:11:36 浏览: 52
这段代码定义了一个宏 `EXTBOT_SET_GPIO_OUT`,其值为 `0x01`。宏定义是 C/C++ 中的一种预处理指令,用于给常量或函数定义一个符号名称,以便在代码中使用该名称代替其对应的值或代码片段。在这里,`EXTBOT_SET_GPIO_OUT` 可以被用来表示设置 GPIO 输出的操作。通过使用宏定义,可以使代码更加清晰和易于维护。
相关问题

#define DS1302_PORT GPIOB #define CLK_Reset_0 GPIOB->BRR=GPIO_Pin_0 #define CLK_Set_1 GPIOB->BSRR-GPIO_Pin_0 #define IO_Reset_0 GPIOB->BRR=GPIO_Pin_1 #define IO_Set_1 GPIOB->BSRR-GPIO_Pin_1 #define RES_Reset_0 GPIOB->BRR-GPIO_Pin_2 #define RES_Set_1 GPIOB->BSRR=GPIO_Pin_2 #define IO_Read GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1) #define Time_24_Hour 0x00 #define Time_Start 0x00 #define ds1302_sec_addr 0x80 #define ds1302_min_addr 0x82 #define ds1302_hour_addr0x84 #define ds1302_day_addr 0x86 #define ds1302_month_addr 0x88 #define ds1302_vear_addr 0x8c void DS1302_GPIOInit(void): void DS1302_IO_GPIO(unsigned char FLAG);//配置I0的方向 void DS1302_delay(u8 dd); void DS1302_Write(unsigned char add,unsigned char dat); unsigned char DS1302_Read(unsigned char add); void DS1302_SetTime(unsigned char *ad); void DS1302_0FF(void); void DS1302_0N(void) ; void DS1302_init(unsignedvoidchar *time); void DS1302_Readtime(void);

这段代码是关于DS1302时钟模块的GPIO控制和基本操作函数的定义。根据代码的内容,可以看出以下几点: 1. 定义了DS1302模块所连接的GPIO端口为GPIOB。 2. 定义了时钟、数据和复位引脚的控制宏,用于设置引脚的状态。 3. 定义了读取IO引脚状态的宏。 4. 定义了一些常量,如时间格式、寄存器地址等。 5. 声明了一些函数的原型,包括GPIO初始化、IO方向配置、延时函数、写入数据函数、读取数据函数等。 根据代码中的函数名和注释,可以推测这段代码是用于控制DS1302时钟模块的基本功能,包括初始化、读取时间、设置时间等操作。 请注意,这只是代码的定义部分,具体的函数实现和调用需要在其他地方完成。

#define DAISY_IN_H GPIO_SetBits(GPIOD,GPIO_Pin_9) #define DAISY_IN_L GPIO_ResetBits(GPIOD,GPIO_Pin_9) #define SCLK_H GPIO_SetBits(GPIOD,GPIO_Pin_10) #define SCLK_L GPIO_ResetBits(GPIOD,GPIO_Pin_10) #define nCS_H GPIO_SetBits(GPIOD,GPIO_Pin_11) #define nCS_L GPIO_ResetBits(GPIOD,GPIO_Pin_11) #define RST_PD_H GPIO_SetBits(GPIOD,GPIO_Pin_13) #define RST_PD_L GPIO_ResetBits(GPIOD,GPIO_Pin_13) #define SDI_H GPIO_SetBits(GPIOD,GPIO_Pin_15) #define SDI_L GPIO_ResetBits(GPIOD,GPIO_Pin_15) #define SDO GPIO_ReadInputDataBit(GPIOD,GPIO_Pin_8) void ADS8688_SPI_WB(uint8_t com) { uint8_t com_temp=com; nCS_L; for(uint8_t s=0;s<8;s++) { if(com_temp&0x80) { SDI_H; } else { SDI_L; } SCLK_H; com_temp<<=1; SCLK_L; } }

这段代码定义了一系列的宏和一个函数 `ADS8688_SPI_WB`,用于通过 SPI 总线向 ADS8688 设备写入数据。 让我们逐一解释这些宏和函数的作用: 1. 宏 `DAISY_IN_H` 和 `DAISY_IN_L`:用于将 GPIO 引脚 PD9 设置为高电平和低电平,控制 DAISY_IN 引脚的状态。 2. 宏 `SCLK_H` 和 `SCLK_L`:用于将 GPIO 引脚 PD10 设置为高电平和低电平,控制 SCLK 引脚的状态。 3. 宏 `nCS_H` 和 `nCS_L`:用于将 GPIO 引脚 PD11 设置为高电平和低电平,控制 nCS (片选信号)引脚的状态。 4. 宏 `RST_PD_H` 和 `RST_PD_L`:用于将 GPIO 引脚 PD13 设置为高电平和低电平,控制 RST_PD 引脚的状态。 5. 宏 `SDI_H` 和 `SDI_L`:用于将 GPIO 引脚 PD15 设置为高电平和低电平,控制 SDI 引脚的状态。 6. 宏 `SDO`:用于读取 GPIO 引脚 PD8 的输入状态,获取 SDO 引脚的值。 7. 函数 `ADS8688_SPI_WB(uint8_t com)`:这个函数用于通过 SPI 总线向 ADS8688 设备写入数据。它接受一个 `uint8_t` 类型的参数 `com`,表示要发送的命令。 - 首先,它将命令 `com` 复制到临时变量 `com_temp` 中。 - 然后,将片选信号引脚 `nCS_L` 置低,选择 ADS8688 设备。 - 接下来,通过循环依次发送命令的每一位: - 如果 `com_temp` 的最高位为 1,则将 SDI 引脚置高。 - 否则,将 SDI 引脚置低。 - 将 SCLK 引脚置高,表示数据有效。 - 将 `com_temp` 左移一位,准备发送下一位。 - 将 SCLK 引脚置低,表示数据传输完成。 - 最后,函数结束前将片选信号引脚 `nCS_H` 置高,取消选择 ADS8688 设备。 综合起来,这段代码定义了一些控制引脚状态的宏和一个通过 SPI 总线向 ADS8688 设备写入数据的函数。这些宏和函数的具体用途和功能需要结合 ADS8688 设备的规格和应用来理解。如果还有其他问题,请随时提问。

相关推荐

#include "main.h" #include "stm32g0xx_hal.h" // 定义LED引脚 #define LED_PIN GPIO_PIN_5 #define LED_PORT GPIOA // 定义WS2812数据帧格式 #define WS2812_LOW_TIME 30 // 单位:纳秒 #define WS2812_HIGH_TIME 70 // 单位:纳秒 #define NUM_LEDS 30 // 更改为您想要的WS2812灯的数量 // 设置RGB颜色 typedef struct { uint8_t red; uint8_t green; uint8_t blue; } RGBColor; uint8_t buffer[NUM_LEDS * 3]; // 发送单个位 static void WS2812_SendBit(uint8_t bitVal) { if (bitVal) { // 发送1 GPIOA->BSRR = LED_PIN; asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); GPIOA->BRR = LED_PIN; asm("nop"); asm("nop"); } else { // 发送0 GPIOA->BSRR = LED_PIN; asm("nop"); asm("nop"); GPIOA->BRR = LED_PIN; asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); } } // 发送单个字节 static void WS2812_SendByte(uint8_t byteVal) { for (int i = 0; i < 8; i++) { WS2812_SendBit(byteVal & 0x80); byteVal <<= 1; } } // 发送RGB颜色数据 void WS2812_SendRGB(void) { for (int i = 0; i < NUM_LEDS; i++) { WS2812_SendByte(buffer[i * 3 + 1]); // 发送红色通道 WS2812_SendByte(buffer[i * 3]); // 发送绿色通道 WS2812_SendByte(buffer[i * 3 + 2]); // 发送蓝色通道 } } // 初始化LED引脚 void LED_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = LED_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); } int main(void) { HAL_Init(); // 初始化LED引脚 LED_Init(); while (1) // 设置每个LED的颜 for (int i = 0; i < NUM_LEDS; i++) { buffer[i * 3] = 255; // 设置绿色通道 buffer[i * 3 + 1] = 200; // 设置红色通道 buffer[i * 3 + 2] = 200; // 设置蓝色通道 WS2812_SendRGB(); HAL_Delay(500); // 点亮时间 buffer[i * 3] = 0; // 关闭当前LED绿色通道 buffer[i * 3 + 1] = 0; // 关当前LED的红色通道 buffer[i * 3 + 2] = 0; // 关闭当前LED的蓝色通道 WS2812_SendRGB(); HAL_Delay(500); // 灭灯时间 } } 按照这个写一个keil5+gd32f130f8p6+ws2812代码,简单易懂以及详细中文注释

#include "dht11.h" #include "protocol.h" #include "lcd.h" #include "string.h" #include <stdio.h> #include "gpio.h" #include "usart.h" #define DHT11_DATA_LOW_TIMEOUT 80 #define DHT11_DATA_HIGH_TIMEOUT 90 #define DHT11_RESPONSE_TIMEOUT 40 #define DHT11_BIT_TIMEOUT 60 DHT11_StatusTypeDef DHT11_ReadData(DHT11_Data_TypeDef* data) { uint8_t buffer[5] = {0}; uint8_t i, j; uint32_t count; // 发送开始信号 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); HAL_Delay(18); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET); // 等待DHT11响应 count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_RESET) { count++; if (count > DHT11_RESPONSE_TIMEOUT) { return DHT11_ERROR; } HAL_Delay(1); } count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_SET) { count++; if (count > DHT11_RESPONSE_TIMEOUT) { return DHT11_ERROR; } HAL_Delay(1); } // 读取40位数据 for (i = 0; i < 40; i++) { count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_RESET) { count++; if (count > DHT11_DATA_LOW_TIMEOUT) { return DHT11_ERROR; } } count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_SET) { count++; if (count > DHT11_DATA_HIGH_TIMEOUT) { return DHT11_ERROR; } } buffer[i / 8] <<= 1; if (count > DHT11_BIT_TIMEOUT) { buffer[i / 8] |= 0x01; } } // 验证数据是否正确 if (buffer[4] != (buffer[0] + buffer[1] + buffer[2] + buffer[3])) { return DHT11_ERROR; } // 解析数据 data->humidity = buffer[0]; data->temp_int = buffer[2]; data->temp_dec = buffer[3]; return DHT11_OK; } void text_func_1() { DHT11_Data_TypeDef data; DHT11_ReadData(&data); printf("-->"); printf("%d.%c %d%%",data.temp_int, data.temp_dec, data.humidity); HAL_Delay(1000); if (DHT11_ReadData(&data) == DHT11_OK){ char str[16]; sprintf(str, "T:%d.%dC H:%d%%", data.temp_int, data.temp_dec, data.humidity); HAL_UART_Transmit(&huart1, (uint8_t*)str, strlen(str), HAL_MAX_DELAY); HAL_Delay(1000); } }改错

#include "global_define.h" uint8_t R_DiscOutVol_Cnt,R_Request_Num_BK,R_PPS_Request_Volt_BK; uint32_t R_PPS_Request_Cur_BK; uint8_t R_HVScan_RequestVol=0,R_HVScan_RequestVol_BK=0,Cnt_Delay_OutVol_Control=0; uint16_t R_VbatVol_Value,R_IbusCur_Value,R_IbatCur_Value; uint8_t R_Error_Time,R_WWDT_Time; TypeOfTimeFlag TimeFlag = {0}; TypeOfStateFlag StateFlag = {0}; //TypeOf_TypeC AP_TypeCA = {0}; TypeOf_TypeC AP_TypeCB = {0}; //TypeOf_PD AP_PDA = {0}; TypeOf_PD AP_PDB = {0}; const unsigned int CONFIG0 __at(0x00300000) = 0x0ED8F127; const uint32_t CONFIG1 __at(0x00300004) = 0x00C0FF3F; //ÓÐIAP¹¦ÄÜ,²»¿ª¿´ÃŹ·// //const unsigned int CONFIG1 __at(0x00300004) = 0x0040ffbf; const unsigned int CONFIG2 __at(0x00300008) = 0x1fffe000; const unsigned int CONFIG3 __at(0x0030000c) = 0x0000ffff; void SlotBranch100ms(void); void SlotBranch1s(void); volatile IsrFlag_Char R_Time_Flag; typedef struct{ uint8_t B_bit0: 1; }TestBits; TestBits Bits; #define check_8812 1 #define check_discharger 0 #define check_MOS 0 extern unsigned char display_gate; //¸Ãº¯ÊýÖ÷ÒªÓÃÀ´¼ì²émosµÄÓ¦Óᣠvoid check_nmos(void) { static unsigned int m,n=0; if(m<500) { m++; GPIO_WriteBit(GPIOB, GPIO_PinSource2, Bit_RESET); } else if(m<1000) { m++; GPIO_WriteBit(GPIOB, GPIO_PinSource2, Bit_SET); } else { m=0; } } unsigned char key_val=0; unsigned char device_state=0; unsigned int device_state_counter=0; #define device_state_counter_data 250 #define device_state_counter_data2 5 #define A_1 10 #define A_8 128 void led_inial(void) { DispBuf.Bits.FastCharge = RESET; DispInit(); } //Main function int main(void) { static unsigned int counter1,counter2=0,bufer; F_MCU_Initialization(); //MCU³õʼ»¯ HV_Init(); //*********************************************************************************** AP_TypeCB.TypeCx = TypeCB; AP_TypeCB.B_Support_HW = SET; AP_TypeCB.TypeC_Rp_Mode = TypeC_Cur

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平
recommend-type

linux下RS485怎么实现

在Linux下实现RS485通信,需要做以下几个步骤: 1. 确认硬件支持:首先需要确认通信设备硬件是否支持RS485通信,如果不支持需要更换支持RS485通信的硬件设备。 2. 配置串口参数:在Linux下使用RS485通信,需要对串口进行一些特殊的配置。例如,需要将串口设置为半双工模式、开启硬件流控等。可以使用Linux提供的stty命令或者相关API接口进行配置。 3. 编写应用程序:通过Linux提供的串口API接口,编写应用程序实现RS485通信。在应用程序中需要设置对应的串口参数,以及发送和接收数据的逻辑。 4. 配置硬件电平转换器:在使用RS485通信时,需要将串口的逻辑
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩