stft_mat = np.transpose(stft_mat)有什么用

时间: 2024-05-21 19:17:15 浏览: 9
这行代码将矩阵 `stft_mat` 进行转置操作,将其行与列的位置交换。这通常是因为在处理音频等数据时,时间通常被表示为矩阵的行,而频率则被表示为矩阵的列。 具体来说,STFT(短时傅里叶变换)通常被用于将音频信号从时域转换到频域,这意味着它将音频信号分解为一系列频率成分。STFT 的结果是一个二维矩阵,其中每列代表一段时间内的频率成分,每行代表不同的频率。为了方便后续处理,通常会将其转置,使得每行表示一个频率成分,每列表示不同的时间段,这样可以更方便地进行后续计算和处理。
相关问题

stft_mat = np.log(np.maximum(stft_mat, EPSILON))什么意思

这行代码的作用是对输入的 STFT(短时傅里叶变换)矩阵中的每个元素取对数,并将结果保存到新的矩阵 `stft_mat` 中。但是由于 STFT 矩阵中有可能存在值为 0 的元素,取对数时会出现无穷大的情况,因此需要在取对数之前先将矩阵中的每个元素都和一个非零的小值 `EPSILON` 取一个最大值,以保证取对数时不会出现无穷大的情况。np.maximum() 函数的作用是返回两个数组中对应元素的较大值。因此,这行代码的含义是:对输入的 STFT 矩阵中的每个元素取对数,并将结果保存到新的矩阵 `stft_mat` 中,如果矩阵中某个元素小于等于 `EPSILON`,则使用 `EPSILON` 来替代该元素。

下面给出一段代码:class AudioDataset(Dataset): def init(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def getitem(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def len(self): return len(self.train_data)。请给出详细注释

这段代码定义了一个 AudioDataset 类,继承自 PyTorch 中的 Dataset 类。主要用于处理音频数据。 ```python class AudioDataset(Dataset): def __init__(self, train_data): self.train_data = train_data self.n_frames = 128 ``` - `__init__` 方法:初始化函数,用于创建 `AudioDataset` 类的实例。传入一个 `train_data` 参数,该参数是一个列表,每个元素是一个二元组,分别表示干净音频文件路径和噪声音频文件路径。 - `train_data` 属性:将传入的训练数据存储在类的属性中。 - `n_frames` 属性:表示每个训练样本的长度,即帧数。 ```python def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) ``` - `pad_zero` 方法:对输入的数据进行零填充,使其长度等于指定的长度。 - `input` 参数:输入的数据。 - `length` 参数:填充后的长度。 - `input_shape` 变量:输入数据的形状。 - 如果输入数据的长度大于等于指定长度,则直接返回原始数据。 - 如果输入数据是一维数组,则在数组末尾添加若干个零,使其长度等于指定长度。 - 如果输入数据是二维数组,则在数组末尾添加若干行零,使其行数等于指定长度。 ```python def __getitem__(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = { 'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude } return b_data ``` - `__getitem__` 方法:该方法用于获取指定索引的训练样本。 - `index` 参数:指定的索引。 - `t_r` 变量:获取指定索引的训练数据。 - `clean_file` 和 `noise_file` 变量:分别表示干净音频文件和噪声音频文件的路径。 - `wav_noise_magnitude` 和 `wav_noise_phase` 变量:使用 librosa 库加载噪声音频文件,并提取其短时傅里叶变换(STFT)结果的幅度和相位。 - `start_index` 变量:指定从哪个位置开始提取数据。 - 如果 `(len(wav_noise_phase) - self.n_frames + 1) < 1`,说明 STFT 结果的长度不足以提取 `self.n_frames` 个帧,此时将 `start_index` 设为 1。 - 否则,随机生成一个 `start_index`,使得从噪声 STFT 结果中提取的子序列长度为 `self.n_frames`。 - `sub_noise_magnitude` 变量:对从噪声 STFT 结果中提取的子序列进行零填充,使其长度等于 `self.n_frames`。 - `wav_clean_magnitude` 和 `wav_clean_phase` 变量:使用 librosa 库加载干净音频文件,并提取其 STFT 结果的幅度和相位。 - `sub_clean_magnitude` 变量:对从干净 STFT 结果中提取的子序列进行零填充,使其长度等于 `self.n_frames`。 - `b_data` 变量:将干净 STFT 结果和噪声 STFT 结果作为字典类型的训练数据返回。 ```python def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase ``` - `extract_fft` 方法:该方法用于对指定的音频文件进行 STFT 变换,并返回其结果的幅度和相位。 - `wav_path` 参数:指定的音频文件路径。 - `audio_samples` 变量:使用 librosa 库加载音频文件,并获取其音频采样值。 - `stft_result` 变量:对音频采样值进行 STFT 变换,返回其结果。 - `stft_magnitude` 和 `stft_phase` 变量:分别表示 STFT 变换结果的幅度和相位。 - 返回 STFT 变换结果的幅度和相位。 ```python def __len__(self): return len(self.train_data) ``` - `__len__` 方法:该方法用于返回训练数据的长度,即样本数量。

相关推荐

下面给出一段代码:class AudioDataset(Dataset): def __init__(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def __getitem__(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def __len__(self): return len(self.train_data)。请给出详细解释和注释

import numpy as np # 假设label和emg分别是标签和肌电信号的数据集 label = label emg = emg # 初始化空的列表 label_data = [] emg_data = [] # 循环提取每个标签数据集和对应的肌电信号数据集 for target_label in range(1, 49): # 初始化临时列表 label_subset = [] emg_subset = [] # 遍历标签数据 for i in range(len(label)): if label[i] == target_label: # 提取相同位置的标签和肌电信号数据 label_subset.append(label[i]) emg_subset.append(emg[i]) # 将临时列表转换为numpy数组,并添加到最终的数据集列表中 label_data.append(np.array(label_subset)) emg_data.append(np.array(emg_subset)) filtered_emg_data = [] fs = 1000 # 采样频率为1000 Hz win_length = 20 # 窗口长度为20毫秒 f_low = 20 # 滤波下限频率为20 Hz f_high = 100 # 滤波上限频率为100 Hz for i in range(len(label_data)): emg_subset = emg_data[i] # 获取肌电信号数据集 filtered_subset = np.zeros(emg_subset.shape) # 初始化滤波后的数据集 # 遍历每个通道(列)进行滤波处理 for j in range(emg_subset.shape[1]): emg_channel = emg_subset[:, j] # 获取当前通道的数据 # 计算 STFT nperseg = int(win_length * fs) f, t, Zxx = signal.stft(emg_channel, fs=fs, window='hamming', nperseg=nperseg, boundary=None, padded=False) # 设置带通滤波的频率范围 freq_idx = np.where((f >= f_low) & (f <= f_high))[0] Zxx_filt = Zxx.copy() Zxx_filt[np.setdiff1d(np.arange(Zxx.shape[0]), freq_idx)] = 0 # 反向STFT获取滤波信号 signal_filt = signal.istft(Zxx_filt, fs=fs, window='hamming', nperseg=nperseg) filtered_subset[:, j] = signal_filt print(signal_filt ) filtered_emg_data.append(filtered_subset) print("Filtered EMG Data Shape:", [data.shape for data in filtered_emg_data])

分析下这段代码:from mne import Epochs, pick_types, events_from_annotations from mne.io import concatenate_raws from mne.io import read_raw_edf from mne.datasets import eegbci import mne import numpy as np import pandas as pd import glob import numpy as np import os from scipy import signal, fft import matplotlib.pyplot as plt path_time = "ttt.csv" # 患者发病发病起止时间表 file_dir = "chb01" path_save = "data" # 选择患者共有的通道 ch = ['FP1-F7', 'F7-T7', 'T7-P7', 'P7-O1', 'FP1-F3', 'F3-C3', 'C3-P3', 'P3-O1', 'FP2-F4', 'F4-C4', 'C4-P4', 'P4-O2', 'FP2-F8', 'F8-T8', 'T8-P8-0', 'P8-O2', 'FZ-CZ', 'CZ-PZ', 'P7-T7', 'T7-FT9', 'FT9-FT10', 'FT10-T8'] sfreq = 256 bandFreqs = [ {'name': 'Delta', 'fmin': 1, 'fmax': 3}, {'name': 'Theta', 'fmin': 4, 'fmax': 7}, {'name': 'Alpha', 'fmin': 8, 'fmax': 13}, {'name': 'Beta', 'fmin': 14, 'fmax': 31}, {'name': 'Gamma', 'fmin': 31, 'fmax': 40} ] # 定义STFT函数 def STFT(epochsData, sfreq, band=bandFreqs): f, t, Zxx = signal.stft(epochsData, fs=sfreq) bandResult = [] for iter_freq in band: index = np.where((iter_freq['fmin'] < f) & (f < iter_freq['fmax'])) portion = np.zeros(Zxx.shape, dtype=np.complex_) portion[:, :, index, :] = Zxx[:, :, index, :] _, xrec = signal.istft(portion, fs=sfreq) # 保存滤波后的结果 bandResult.append(xrec) return bandResult time = pd.read_csv(path_time,index_col="chb") files = sorted(os.listdir(file_dir)) for file in files: if os.path.splitext(file)[1] == '.edf': f = os.path.splitext(file)[0] f_str = str(os.path.splitext(os.path.splitext(file)[0])[0]) if i == 0: raws = mne.io.read_raw_edf(file_dir+"/" + file,preload=True,verbose=False) raws.pick_channels(ch) raws.filter(0.1,50.,method='iir') raw_d,raw_t = raws[:,:] i+=1 else: i+=1 if f_str in time.index: time.loc[f_str]['start'] = time.loc[f_str]['start'] * 256 + len(raw_t) time.loc[f_str]['end'] = time.loc[f_str]['end']*256 + len(raw_t) raw = mne.io.read_raw_edf(file_dir+"/" + file, preload=True,verbose=False) raw.pick_channels(ch) raw.filter(0.1,50.,method='iir') raws = concatenate_raws([raws,raw]) raws_d, raw_t = raws[:,:] d, t = raws[:,:] data = d*1e6 stft = STFT(d, sfreq) pointNum = d.shape[0] stftFreq = np.abs(fft.fft(stft[:pointNum])) data = np.transpose(stftFreq, axes=(1,3,2,0)) np.save(path_save+"/"+file_dir+".npy",data)

最新推荐

recommend-type

chromedriver-win64_116.0.5840.0.zip

chromedriver-win64_116.0.5840.0.zip
recommend-type

基于Java Servlet实现的灾情控制系统.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

计算机毕业设计-求职与招聘.zip

计算机毕业设计资源包含(项目部署视频+源码+LW+开题报告等等),所有项目经过助教老师跑通,有任何问题可以私信博主解决,可以免费帮部署。
recommend-type

【PID优化】粒子群算法和遗传算法自动电压调节器 (AVR) 系统PID控制器优化调整【含Matlab源码 4698期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依