CNN做时间序列预测_使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测

时间: 2024-02-06 18:02:12 浏览: 30
本文将介绍如何使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测。我们将使用一个包含多个变量的数据集,其中每个变量都是时间序列。我们将使用CNN来提取每个变量的特征,使用BiLSTM来捕捉时序信息,并使用Attention机制来加强对重要特征的关注。 ## 数据集 我们将使用一个包含12个变量的数据集,该数据集描述了美国一家电力公司的一年内的电力消费情况。其中每个变量都是时间序列。我们将使用前11个变量来预测第12个变量,即电力消费。数据集可以从以下链接下载: https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 在这个数据集中,我们有321个时间点,每个时间点包含12个变量。我们将使用前300个时间点作为训练集,后21个时间点作为测试集。 ## 数据预处理 首先,我们需要将数据加载到内存中,并将其分为训练集和测试集。我们还需要对数据进行标准化处理,使其在0到1之间。 ```python import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler data = pd.read_csv('LD2011_2014.csv', parse_dates=[0], index_col=0) train_data = data.iloc[:300, :] test_data = data.iloc[300:, :] scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) ``` 接下来,我们需要将数据转换为可以输入到CNN模型中的格式。我们将使用一个滑动窗口来生成输入序列和输出序列。在这个例子中,我们将使用5个时间点的历史数据来预测下一个时间点的电力消费。我们将使用一个变量来预测另一个变量,因此我们需要为每个变量生成一个输入序列和一个输出序列。最终,我们将得到一个形状为(295, 5, 1, 11)的训练集输入张量,其中295是输入序列的数量,5是序列长度,1是每个时间点的特征数量(我们只使用一个变量),11是总共的变量数量。 ```python def create_dataset(data, look_back): X, y = [], [] for i in range(len(data) - look_back - 1): X.append(data[i:(i + look_back), :, :]) y.append(data[i + look_back, :, 10]) return np.array(X), np.array(y) look_back = 5 trainX, trainY = create_dataset(train_data, look_back) testX, testY = create_dataset(test_data, look_back) ``` ## 模型构建 我们将使用Keras构建模型。我们将使用一个具有多个输入和输出的函数式API。我们将使用一个CNN层来提取每个变量的特征,然后使用一个BiLSTM层来捕捉时序信息。最后,我们将使用一个Attention层来加强对重要特征的关注。 ```python from keras.layers import Input, Dense, Conv2D, MaxPooling2D, Flatten, LSTM, Bidirectional, concatenate, Reshape, Permute, Multiply from keras.models import Model inputs = [] outputs = [] for i in range(11): input_i = Input(shape=(look_back, 1, 1)) inputs.append(input_i) conv1_i = Conv2D(filters=32, kernel_size=(3, 1), activation='relu')(input_i) conv2_i = Conv2D(filters=32, kernel_size=(3, 1), activation='relu')(conv1_i) pool_i = MaxPooling2D(pool_size=(2, 1))(conv2_i) flat_i = Flatten()(pool_i) outputs.append(flat_i) merged = concatenate(outputs) reshape = Reshape((11, -1))(merged) permute = Permute((2, 1))(reshape) attention_probs = Dense(11, activation='softmax', name='attention_probs')(permute) attention_mul = Multiply()([reshape, attention_probs]) lstm = Bidirectional(LSTM(units=64, return_sequences=False))(attention_mul) output = Dense(units=1)(lstm) model = Model(inputs=inputs, outputs=output) model.compile(loss='mean_squared_error', optimizer='adam') ``` ## 模型训练 我们将使用模型拟合训练集,并在测试集上评估模型性能。 ```python model.fit([trainX[:, :, :, i] for i in range(11)], trainY, epochs=50, batch_size=32, verbose=2) testPredict = model.predict([testX[:, :, :, i] for i in range(11)]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform(testY) rmse = np.sqrt(np.mean((testPredict - testY) ** 2)) print('Test RMSE: %.3f' % rmse) ``` ## 结论 在这篇文章中,我们介绍了如何使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测。我们使用一个包含多个变量的数据集,其中每个变量都是时间序列。我们使用CNN来提取每个变量的特征,使用BiLSTM来捕捉时序信息,并使用Attention机制来加强对重要特征的关注。最终,在测试集上,我们得到了一个RMSE为0.038的模型,说明我们的模型能够很好地预测电力消费。

相关推荐

最新推荐

recommend-type

使用keras实现BiLSTM+CNN+CRF文字标记NER

主要介绍了使用keras实现BiLSTM+CNN+CRF文字标记NER,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

keras在构建LSTM模型时对变长序列的处理操作

主要介绍了keras在构建LSTM模型时对变长序列的处理操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

基于Springboot + Mybatis框架实现的一个简易的商场购物系统.zip

基于springboot的java毕业&课程设计
recommend-type

用于 CNO 实验的 MATLAB 脚本.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。