stm32读取串口数据

时间: 2023-10-27 15:04:57 浏览: 90
在STM32中,读取串口数据通常使用USART(通用同步/异步收发器)模块。下面是一个简单的示例代码,可以读取串口数据并将其发送回电脑: ```c #include "stm32f10x.h" #include <stdio.h> #define USART1_TX_PIN GPIO_Pin_9 #define USART1_RX_PIN GPIO_Pin_10 void USART1_Init(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; // 使能 USART1 和 GPIOA 时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); // 配置 USART1 引脚 GPIO_InitStructure.GPIO_Pin = USART1_TX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = USART1_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置 USART1 USART_StructInit(&USART_InitStructure); USART_InitStructure.USART_BaudRate = 9600; USART_Init(USART1, &USART_InitStructure); // 使能 USART1 USART_Cmd(USART1, ENABLE); } int main(void) { USART1_Init(); while (1) { // 等待接收数据 while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // 读取接收到的数据 uint8_t data = USART_ReceiveData(USART1); // 发送接收到的数据 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendData(USART1, data); } } ``` 上述代码中,首先通过 `USART1_Init()` 函数初始化 USART1 模块和相关的 GPIO 引脚。然后,在主函数中使用一个无限循环来等待从串口接收到数据,并使用 `USART_ReceiveData()` 函数读取接收到的数据。随后,使用 `USART_SendData()` 函数将接收到的数据发送回电脑。需要注意的是,在发送数据之前需要等待发送缓冲区为空,以保证数据不会丢失。 此外,如果需要读取多个字节的数据,可以使用一个循环来连续读取数据,例如: ```c while (1) { // 等待接收数据 while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // 读取接收到的数据 uint8_t data[10]; for (int i = 0; i < 10; i++) { while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); data[i] = USART_ReceiveData(USART1); } // 处理接收到的数据 // ... // 发送接收到的数据 for (int i = 0; i < 10; i++) { while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendData(USART1, data[i]); } } ```

相关推荐

最新推荐

recommend-type

STM32串口发送注意问题

在使用STM32串口发送数据时,可能会遇到TC状态位引起的错误。该错误会导致第一个发送的数据丢失。为解决这个问题,需要了解TC状态位的性质和作用。 TC状态位是USART中的一个标志位,当串口发送完成时,硬件将该位...
recommend-type

Python 实现Serial 与STM32J进行串口通讯

在循环中,用户被提示输入字符,输入的字符通过`ser.write(datainput)`发送到串口,同时`ser.read(n)`用于读取相应长度的响应数据并打印出来。这里的`n`是发送数据的长度,这是防止串口通信阻塞的关键,因为不正确地...
recommend-type

关于STM32的flash读写数据和HardFault_Handler的问题

今天调试程序的时候需要把掉电前的数据存储到flash中之后等待下次...刚刚开始的时候去找了一些stm32的flash的操作,真的是废话连篇的真正能用到的没几句话,这里我把自己调试好的flash读写数据的子函数跟大家分享一下。
recommend-type

CUBEMX-STM32F030学习笔记

STM32F030F4P6是一款32位微控制器,基于ARM Cortex-M0内核,具有16KB FLASH存储器、4KB RAM、1个USART串口、TSSOP20脚封装,工作电压为2.4-3.6V,具有15个可用IO口。 二、HAL 库和STM32CubeMX HAL库是 STM32 微...
recommend-type

如何在STM32中做超时检测?

请问有谁知道在STM32中如何做超时检测吗?目前STM32上有一个串口转RS485,挂了约50个节点。然后需要检测每个节点返回的命令是否超时。请问一下,如何来检测这个超时呢?
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。