class ResNet(nn.Module):
时间: 2023-10-23 08:44:22 浏览: 85
这段代码定义了ResNet模型的整体架构。
ResNet模型是由多个基本块(残差块)组成的,其中每个基本块都是由多个卷积层、批归一化层和激活函数组成的。整个ResNet模型的基本结构如下:
1. 在ResNet的前面,通常会加上一个卷积层和批归一化层,用于对输入图像进行预处理。
2. ResNet模型由多个阶段(stage)组成,每个阶段包含多个基本块(残差块)。在每个阶段的开头,通常会对输入张量进行下采样(降低分辨率),以便与后续基本块的输出形状匹配。
3. 在每个阶段中,我们会用多个基本块(残差块)组成一个大的模块。在这个大的模块中,每个基本块的输入张量都是上一个基本块的输出张量。这个大的模块的输出张量也就是整个阶段的输出张量。
4. 最后,我们在ResNet的后面加上一个全局平均池化层和一个全连接层,用于将最后一个阶段的输出张量转换为最终的分类结果。
在ResNet模型中,每个基本块的结构都是相同的,因此我们可以通过定义一个基本块的类来简化模型的定义。具体实现细节可以参考ResNet中基本块的定义。
相关问题
class ResNet(nn.Module):完整代码
以下是一个简单的 ResNet 实现的完整 Python 代码:
```python
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.ReLU()(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(block, 64, layers[0], stride=1)
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = nn.Flatten()(out)
out = self.fc(out)
return out
```
这里实现了 ResNet18,但是根据需要,你可以调整块的数量来实现 ResNet34、ResNet50、ResNet101 和 ResNet152 等预训练模型。
class ResUp(nn.Module):
这是一个PyTorch的神经网络模块,用于上采样图像或特征图。其实现方式为ResNet中的上采样模块,通常用于图像分割或图像生成等任务中。以下是该模块的代码实现:
```python
import torch.nn as nn
class ResUp(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super(ResUp, self).__init__()
self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, output_padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * 4, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * 4)
self.relu = nn.ReLU(inplace=True)
self.upsample = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels * 4, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * 4)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.upsample(identity)
out += identity
out = self.relu(out)
return out
```
该模块输入的张量shape为$[batch\_size, in\_channels, height, width]$,输出的张量shape为$[batch\_size, out\_channels * 4, height * stride, width * stride]$。其中,$stride$表示上采样的倍数。
阅读全文