knn算法python代码鸢尾花

时间: 2023-10-14 11:21:13 浏览: 104
好的,以下是KNN算法的Python代码来处理鸢尾花数据集: ``` from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) print("训练集准确率:{:.2f}".format(knn.score(X_train, y_train))) print("测试集准确率:{:.2f}".format(knn.score(X_test, y_test))) ```
相关问题

knn算法python代码鸢尾花可视化

### 回答1: 以下是使用Python实现KNN算法并可视化鸢尾花数据集的代码: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 iris = load_iris() X = iris.data[:, :2] # 只使用前两个特征 y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=42) # 训练KNN模型 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) # 可视化训练集和测试集 plt.figure(figsize=(10, 6)) plt.scatter(X_train[:, ], X_train[:, 1], c=y_train, cmap='viridis', label='Train') plt.scatter(X_test[:, ], X_test[:, 1], c=y_test, cmap='viridis', marker='x', label='Test') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.legend() plt.show() # 可视化KNN分类结果 plt.figure(figsize=(10, 6)) h = .02 # 网格步长 x_min, x_max = X[:, ].min() - .5, X[:, ].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap='viridis', alpha=.5) plt.scatter(X_train[:, ], X_train[:, 1], c=y_train, cmap='viridis', label='Train') plt.scatter(X_test[:, ], X_test[:, 1], c=y_test, cmap='viridis', marker='x', label='Test') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.legend() plt.show() ``` 运行以上代码,即可得到训练集和测试集的散点图以及KNN分类结果的可视化图。 ### 回答2: KNN(K-Nearest Neighbors)算法是一种简单而有效的分类算法。在Python中,通过使用scikit-learn库,我们可以很方便地对鸢尾花数据进行KNN分类,并将结果进行可视化。 首先,我们需要导入一些必要的库: ``` import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier ``` 接着,我们可以使用以下代码来加载鸢尾花数据集: ``` iris = datasets.load_iris() X = iris.data[:, :2] # 只使用前两个特征 y = iris.target ``` 在这里,我们只使用了鸢尾花数据集中的前两个特征来进行分类。接下来,我们可以通过以下代码将数据集分成训练集和测试集: ``` # 将数据集分成训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) ``` 接下来,我们可以通过以下代码对训练集进行KNN分类: ``` # 训练KNN分类器 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) ``` 在这里,我们使用了KNeighborsClassifier类来创建一个KNN分类器,并使用fit方法对训练集进行训练。 接着,我们可以使用以下代码对测试集进行预测并计算准确率: ``` # 对测试集进行预测并计算准确率 accuracy = knn.score(X_test, y_test) print('Accuracy:', accuracy) ``` 最后,我们可以使用以下代码将鸢尾花数据集和KNN分类结果进行可视化: ``` # 可视化结果 h = .02 # 网格步长 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # 绘制训练集数据点和测试集数据点 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', cmap=plt.cm.Paired) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.Paired, alpha=0.5) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() ``` 在这里,我们首先使用meshgrid函数创建了一个网格,然后对网格中的每个点进行预测,并将结果进行可视化。同时,我们还绘制了训练集数据点和测试集数据点,以便更好地展示分类结果。 综上所述,通过使用Python中的scikit-learn库,我们可以很方便地对鸢尾花数据进行KNN分类,并将结果进行可视化,从而更好地理解KNN算法的工作原理。 ### 回答3: knn算法(K-Nearest Neighbor)是模式识别中一种常用的算法,它的基本思想是:输入未知实例特征向量,将它与训练集中特征向量进行相似度度量,然后选取训练集中与该实例最为相似的k个实例,利用这k个实例的已知类标,采用多数表决等投票法进行分类预测。这种方法简单而有效,准确性高,特别适合于多分类、样本偏斜不平衡、非线性的数据分类问题。本文将介绍如何使用Python实现KNN算法,并可视化表现在鸢尾花分类问题上。 数据集的导入 我们使用鸢尾花数据集,首先需要导入相关的库和数据。其中,数据集中有4个属性分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)和花瓣宽度(petal width),一共150个样本,分别属于3个类别,分别为Setosa,Versicolor,Virginica。 from sklearn.datasets import load_iris import numpy as np iris = load_iris() iris_data = iris.data iris_labels = iris.target iris_names = iris.target_names KNN算法的实现 KNN算法的核心代码如下所示。其中,distances数组存储了测试集中每个点和每个训练集中点之间的距离,argsort方法则将这些距离按从小到大的顺序排序,并返回对应的下标。由于要选取k个最小值,因此需要选取前k个最小值对应的下标,再统计这些下标对应训练集中类别出现的次数。最后,返回出现次数最多的类别。 #定义KNN分类器 def knn_classify(test_data, train_data, labels, k): distances = np.sqrt(np.sum((train_data - test_data)**2,axis = 1)) sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 maxCount = 0 maxIndex = -1 for key,value in classCount.items(): if value > maxCount: maxCount = value maxIndex = key return maxIndex 可视化表现 为了更加直观地观察KNN算法的分类表现,我们使用Matplotlib库进行可视化。我们将训练集中不同类型的花的属性值绘制在不同的颜色中,并用散点图展示 。接下来,我们将测试集中每个点的属性值和类标绘制在同一张图中,并将分类结果用圆圈标识出来。 import matplotlib.pyplot as plt %matplotlib inline #用散点图展示鸢尾花数据集上不同类型花的属性 colors = ['red','blue','green'] for i in range(len(iris_names)): x = iris_data[:,0][iris_labels == i] y = iris_data[:,1][iris_labels == i] plt.scatter(x, y, c = colors[i],label = iris_names[i]) plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend(loc='upper left') #可视化分类表现 point_size = 50 test_point = [6,3] #假设测试点的属性值为[6,3] plt.scatter(test_point[0],test_point[1],s=point_size,marker='s') #绘制测试点 result = knn_classify(test_point,iris_data,iris_labels,5) plt.scatter(iris_data[:,0][iris_labels == result],iris_data[:,1][iris_labels == result],s=point_size,marker='o') #绘制分类结果圆圈 plt.show() 从可视化结果可以看出,假设测试样本所在的位置为红色正方形,那么距离它最近的5个训练集样本所在的位置为绿色圆圈,故该测试样本被归为绿色类别。

knn算法python鸢尾花散点图

以下是使用Python的scikit-learn库实现k-NN算法,并绘制鸢尾花数据集的散点图的示例代码: ```python import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 iris = datasets.load_iris() X = iris.data[:, :2] # 只取前两个特征 y = iris.target # 初始化k-NN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 训练分类器 knn.fit(X, y) # 预测新样本的类别 X_new = np.array([[5, 3.5]]) # 新样本的特征 y_pred = knn.predict(X_new) print("预测结果:", iris.target_names[y_pred]) # 绘制鸢尾花数据集的散点图 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.title('Iris dataset') plt.show() ``` 运行以上代码,可以得到类似下图的散点图: ![image](https://user-images.githubusercontent.com/44204404/134040506-f3b4ae4b-3c40-4d13-bf2b-f41e9e067c97.png)
阅读全文

相关推荐

最新推荐

recommend-type

基于智能温度监测系统设计.doc

基于智能温度监测系统设计.doc
recommend-type

搜广推推荐系统中传统推荐系统方法思维导图整理-完整版

包括userCF,itemCF,MF,LR,POLY2,FM,FFM,GBDT+LR,阿里LS-PLM 基于深度学习推荐系统(王喆)
recommend-type

GitHub图片浏览插件:直观展示代码中的图像

资源摘要信息: "ImagesOnGitHub-crx插件" 知识点概述: 1. 插件功能与用途 2. 插件使用环境与限制 3. 插件的工作原理 4. 插件的用户交互设计 5. 插件的图标和版权问题 6. 插件的兼容性 1. 插件功能与用途 插件"ImagesOnGitHub-crx"设计用于增强GitHub这一开源代码托管平台的用户体验。在GitHub上,用户可以浏览众多的代码仓库和项目,但GitHub默认情况下在浏览代码仓库时,并不直接显示图像文件内容,而是提供一个“查看原始文件”的链接。这使得用户体验受到一定限制,特别是对于那些希望直接在网页上预览图像的用户来说不够方便。该插件正是为了解决这一问题,允许用户在浏览GitHub上的图像文件时,无需点击链接即可直接在当前页面查看图像,从而提供更为流畅和直观的浏览体验。 2. 插件使用环境与限制 该插件是专为使用GitHub的用户提供便利的。它能够在GitHub的代码仓库页面上发挥作用,当用户访问的是图像文件页面时。值得注意的是,该插件目前只支持".png"格式的图像文件,对于其他格式如.jpg、.gif等并不支持。用户在使用前需了解这一限制,以免在期望查看其他格式文件时遇到不便。 3. 插件的工作原理 "ImagesOnGitHub-crx"插件的工作原理主要依赖于浏览器的扩展机制。插件安装后,会监控用户在GitHub上的操作。当用户访问到图像文件对应的页面时,插件会通过JavaScript检测页面中的图像文件类型,并判断是否为支持的.png格式。如果是,它会在浏览器地址栏的图标位置上显示一个小octocat图标,用户点击这个图标即可触发插件功能,直接在当前页面上查看到图像。这一功能的实现,使得用户无需离开当前页面即可预览图像内容。 4. 插件的用户交互设计 插件的用户交互设计体现了用户体验的重要性。插件通过在地址栏中增加一个小octocat图标来提示用户当前页面有图像文件可用,这是一种直观的视觉提示。用户通过简单的点击操作即可触发查看图像的功能,流程简单直观,减少了用户的学习成本和操作步骤。 5. 插件的图标和版权问题 由于插件设计者在制作图标方面经验不足,因此暂时借用了GitHub的标志作为插件图标。插件的作者明确表示,如果存在任何错误或版权问题,将会进行更改。这体现了开发者对知识产权尊重的态度,同时也提醒了其他开发者在使用或设计相关图标时应当考虑到版权法律的约束,避免侵犯他人的知识产权。 6. 插件的兼容性 插件的兼容性是评估其可用性的重要标准之一。由于插件是为Chrome浏览器的用户所设计,因此它使用了Chrome扩展程序的标准格式,即.crx文件。用户需要通过浏览器的扩展程序管理界面进行安装。尽管目前插件仅支持.png图像格式,但对于希望在GitHub上浏览.png图像文件的用户来说,已经提供了非常实用的功能。未来,若开发者计划拓展插件支持的文件格式或适用于其他浏览器,则需要考虑到对现有代码的扩展和兼容性测试。 总结: "ImagesOnGitHub-crx"插件通过创新的用户体验设计,解决了GitHub在浏览图像文件时的一些局限性,使得图像浏览更加直观和便捷。尽管目前该插件存在一些限制,如仅支持.png格式和仅在Chrome浏览器中可用,但它为用户和开发者提供了良好的思路和实践。对于希望提高效率和增强功能的用户来说,这类工具扩展了GitHub的实用性,是开发人员工具箱中的一个有益补充。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【OPPO手机故障诊断专家】:工程指令快速定位与解决

![【OPPO手机故障诊断专家】:工程指令快速定位与解决](https://www.consumerelectronicstestdevelopment.com/media/2hlomnxy/oppo.jpg?anchor=center&mode=crop&width=1002&height=564&bgcolor=White&rnd=132773815380200000) # 摘要 本文综述了OPPO手机故障诊断的技术细节,涵盖了工程指令的基础理论、实践应用、高级技巧以及未来发展方向。首先介绍了工程指令的定义、分类、执行环境及其与手机系统交互的重要性。随后,深入探讨了工程指令在初步故障诊断
recommend-type

求[100,900]之间相差为12的素数对(注:要求素数对的两个素数均在该范围内)的个数

求解 [100, 900] 范围内相差为 12 的素数对,首先我们需要确定哪些数在这个区间内是素数。然后筛选出它们成对出现且差值为 12 的情况。 1. 确定素数范围内的素数:我们可以编写一个简单的程序来检查每个数字是否为素数,如果数字大于 1,并且除 2 到其平方根之间的所有整数都不能整除它,那么这个数字就是素数。 2. 遍历并寻找符合条件的素数对:从较大的素数开始向下遍历,找到的第一个素数作为“较大”素数,然后查看比它小 12 的下一个数,如果这个数也是素数,则找到了一对符合条件的素数。 3. 统计素数对的数量:统计在给定范围内找到的这种差距为 12 的素数对的数量。 由于计算素数
recommend-type

Android IPTV项目:直播频道的实时流媒体实现

资源摘要信息:"IPTV:直播IPTV的Android项目是一个基于Android平台的实时流式传输应用。该项目允许用户从M3U8或M3U格式的链接或文件中获取频道信息,并将这些频道以网格或列表的形式展示。用户可以在应用内选择并播放指定的频道。该项目的频道列表是从一个预设的列表中加载的,并且通过解析M3U或M3U8格式的文件来显示频道信息。开发者还计划未来更新中加入Exo播放器以及电子节目单功能,以增强用户体验。此项目使用了多种技术栈,包括Java、Kotlin以及Kotlin Android扩展。" 知识点详细说明: 1. IPTV技术: IPTV(Internet Protocol Television)即通过互联网协议提供的电视服务。它与传统的模拟或数字电视信号传输方式不同,IPTV通过互联网将电视内容以数据包的形式发送给用户。这种服务使得用户可以按需观看电视节目,包括直播频道、视频点播(VOD)、时移电视(Time-shifted TV)等。 2. Android开发: 该项目是针对Android平台的应用程序开发,涉及到使用Android SDK(软件开发工具包)进行应用设计和功能实现。Android应用开发通常使用Java或Kotlin语言,而本项目还特别使用了Kotlin Android扩展(Kotlin-Android)来优化开发流程。 3. 实时流式传输: 实时流式传输是指媒体内容以连续的流形式进行传输的技术。在IPTV应用中,实时流式传输保证了用户能够及时获得频道内容。该项目可能使用了HTTP、RTSP或其他流媒体协议来实现视频流的实时传输。 4. M3U/M3U8文件格式: M3U(Moving Picture Experts Group Audio Layer 3 Uniform Resource Locator)是一种常用于保存播放列表的文件格式。M3U8则是M3U格式的扩展版本,支持UTF-8编码,常用于苹果设备。在本项目中,M3U/M3U8文件被用来存储IPTV频道信息,如频道名称、视频流URL等。 5. Exo播放器: ExoPlayer是谷歌官方提供的一个开源视频播放器,专为Android优化。它支持多种特性,如自定义字幕、HDR视频播放、无缝直播等。ExoPlayer通常用于处理IPTV应用中的视频流媒体播放需求。 6. 电子节目单(EPG): 电子节目单是IPTV应用中一项重要功能,它为用户提供频道的节目指南,包括当前播放的节目以及未来节目的安排。电子节目单一般以网格或列表形式展示,方便用户浏览和搜索节目信息。 7. 开源贡献文化: 该项目提到了欢迎贡献者,表明这是一个开源项目。在开源文化中,开发者社区鼓励用户、开发者贡献代码来改进项目,这是一个共享知识、共同进步的过程。参与者通过贡献代码、报告问题或提供文档帮助等方式参与项目。 8. Kotlin编程语言: Kotlin是一种运行在Java虚拟机上的静态类型编程语言,它与Java完全兼容并可以无缝集成Java代码。Kotlin以其简洁、安全和富有表现力的特点被越来越多的Android开发者采用。在本项目中,使用Kotlin可以简化代码结构,提高开发效率和应用性能。 总结而言,本项目是一个面向Android平台的实时流媒体IPTV应用开发项目,它整合了实时流式传输、M3U/M3U8文件解析、Exo播放器使用、电子节目单功能等关键技术点,并在开源社区中寻求贡献者的参与。通过本项目,开发者可以深入了解如何在Android平台上实现IPTV服务,并学习到使用Kotlin和Java等编程语言进行Android应用开发的相关知识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPPO手机工程模式终极指南】:掌握这些秘籍,故障排查不再难!

![【OPPO手机工程模式终极指南】:掌握这些秘籍,故障排查不再难!](https://i02.appmifile.com/mi-com-product/fly-birds/redmi-note-13/M/23e4e9fd45b41a172a59f811e3d1406d.png) # 摘要 OPPO手机工程模式是为高级用户和开发者设计的一组调试和诊断工具集,它能够帮助用户深入了解手机硬件信息、进行测试和故障诊断,并优化设备性能。本文将对OPPO工程模式进行系统性的介绍,包括如何进入和安全退出该模式,详述其中的基础与高级功能,并提供实用的故障诊断和排查技巧。同时,本文还将探讨如何利用工程模式对
recommend-type

前端在json文件里写模板,可以换行 有空格现在在文本框的时候

前端在 JSON 文件中通常不会直接写模板,并且 JSON 格式本身是基于键值对的,不支持换行和空格的保留。JSON 是一种数据交换格式,它要求数据结构紧凑、易于解析。如果你需要在前端显示模板内容,推荐使用 JavaScript 的模板字符串 (Template literals) 或者 Handlebars、Mustache 等前端模板引擎。 当你想在文本框中显示 JSON 数据时,会先将 JSON 转换成 HTML 可渲染的内容。例如: ```javascript let jsonData = { "template": "这是一个<br>换行示例", "text": "这是文