python局部加权线性回归
时间: 2023-10-02 11:10:33 浏览: 199
实战(python)局部加权线性回归
5星 · 资源好评率100%
局部加权线性回归(Locally Weighted Linear Regression,LWLR)是一种非参数回归算法,它假设每个数据点周围的数据点比其他点更能影响回归结果,因此在拟合回归线时,对于每个数据点,LWLR都会根据该点附近的数据点进行加权平均,从而得到该点对应的回归系数。
具体来说,对于给定的一个数据点x,LWLR首先根据高斯核函数(Gaussian Kernel)计算出该点附近的每个数据点的权重,然后根据这些权重对回归系数进行加权平均,得到该点的预测值。LWLR的核心思想就是在拟合回归线时,更加关注与当前数据点“相似”的数据点,从而提高了拟合的准确性。
LWLR的优点在于可以灵活地适应不同的数据分布,而且不需要对数据进行假设,因此适用于各种类型的数据。缺点在于计算量较大,而且对于每个数据点都需要重新计算权重和回归系数,因此不适用于大规模数据集。
阅读全文