Large Margin aware Focal (LMF) 损失函数是 Focal 损失函数和 LDAM损失函数加权的线性组合,帮我用pytorch代码实现LMF损失函数
时间: 2023-12-25 08:07:44 浏览: 109
基于通道注意力机制的RGB-D图像语义分割网络
好的,下面是用PyTorch实现LMF损失函数的代码:
```python
import torch
import torch.nn as nn
class LMF_Loss(nn.Module):
def __init__(self, gamma=2, alpha=None, beta=None):
super(LMF_Loss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.beta = beta
def forward(self, input, target):
ce_loss = nn.functional.cross_entropy(input, target, reduction='none')
pt = torch.exp(-ce_loss)
focal_loss = (1 - pt) ** self.gamma * ce_loss
if self.alpha is not None and self.beta is not None:
# get unique classes
classes = torch.unique(target)
# calculate class weights
N = len(target)
n_classes = len(classes)
weights = torch.zeros(n_classes).to(target.device)
for c in classes:
samples_per_class = (target == c).sum()
if samples_per_class == 0:
continue
weights[c] = (N - samples_per_class) / (N * (n_classes - 1))
alpha_factor = torch.ones_like(target).to(target.device)
beta_factor = torch.ones_like(target).to(target.device)
for c in classes:
alpha_factor[target == c] *= self.alpha[weights[c] > 0]
beta_factor[target == c] *= self.beta[weights[c] > 0]
weighted_focal_loss = alpha_factor * beta_factor * focal_loss
loss = weighted_focal_loss.mean()
else:
loss = focal_loss.mean()
return loss
```
其中,`gamma`为Focal损失函数中的超参数,`alpha`和`beta`为LDAM损失函数中的权重,若不使用LDAM,则置为`None`。
使用方法如下:
```python
criterion = LMF_Loss(gamma=2, alpha=None, beta=None)
loss = criterion(output, target)
```
阅读全文