pytorch提取resnet50网络的每个层,比如,每个卷积层,BN层等
时间: 2023-07-07 14:25:46 浏览: 155
你可以通过以下代码提取resnet50网络的每个层,包括每个卷积层、BN层等:
```python
import torch.nn as nn
import torchvision.models as models
# 加载resnet50模型
resnet50 = models.resnet50(pretrained=True)
# 获取resnet50模型的每个层
layers = list(resnet50.children())
# 打印每个层的名称和结构
for i, layer in enumerate(layers):
print("Layer {}: {}".format(i+1, layer))
```
这个代码会输出resnet50模型的每个层的名称和结构,你可以根据需要选择其中的某些层进行后续操作,比如微调或可视化。
相关问题
自定义一个不经过额外的线性层的ResNet50网络,输出维度为512,给出pytorch代码和详细注释
好的,以下是一个自定义的不经过额外线性层的ResNet50网络的PyTorch代码和详细注释:
```python
import torch.nn as nn
# 定义BasicBlock模块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
# 第一个卷积层
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
# 第二个卷积层
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
# 残差连接
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
# 前向传播
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x))) # 第一个卷积层
out = self.bn2(self.conv2(out)) # 第二个卷积层
out += self.shortcut(x) # 残差连接
out = nn.ReLU()(out) # 激活函数
return out
# 定义ResNet模块
class ResNet(nn.Module):
def __init__(self, block, num_blocks):
super(ResNet, self).__init__()
# ResNet第一层卷积层
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
# ResNet四个层
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# 全局平均池化层
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 构建ResNet中的一个层
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1) # 每个模块的第一个BasicBlock的步幅为stride,其余为1
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride)) # 添加BasicBlock模块
self.in_planes = planes * block.expansion # 更新输入通道数
return nn.Sequential(*layers)
# 前向传播
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x))) # ResNet第一层卷积层
out = self.layer1(out) # ResNet第二层
out = self.layer2(out) # ResNet第三层
out = self.layer3(out) # ResNet第四层
out = self.layer4(out) # ResNet第五层
out = self.avgpool(out) # 全局平均池化层
out = out.view(out.size(0), -1) # 将输出展平
return out
# 定义ResNet50模型
def ResNet50():
return ResNet(BasicBlock, [3, 4, 6, 3])
```
注意,这个网络只包含了ResNet的特征提取部分,没有额外的线性层。如果你需要在这个网络后面加上额外的线性层,你可以将其输出维度改为512,并在其后面加上一个nn.Linear层。
三输入特征三输出的一维卷积神经网络,使用ResNet网络的基于pytorch的代码示例
以下是基于PyTorch实现的三输入特征三输出的一维卷积神经网络,使用ResNet网络的代码示例。
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks=2):
super(ResNet, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.conv1 = nn.Conv1d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, num_blocks)
self.layer2 = self._make_layer(64, 128, num_blocks, stride=2)
self.layer3 = self._make_layer(128, 256, num_blocks, stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Linear(256, 128)
self.fc2 = nn.Linear(128, out_channels)
def _make_layer(self, in_channels, out_channels, num_blocks, stride=1):
downsample = None
if stride != 1 or in_channels != out_channels:
downsample = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels),
)
layers = [ResNetBlock(in_channels, out_channels, stride, downsample)]
for _ in range(1, num_blocks):
layers.append(ResNetBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x1, x2, x3):
x = torch.cat((x1.unsqueeze(1), x2.unsqueeze(1), x3.unsqueeze(1)), dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
```
该代码实现了一个ResNet网络,其中包含了ResNetBlock和ResNet两个类。ResNetBlock是ResNet的基本模块,ResNet是整个网络。
在ResNet中,我们首先对输入的三个特征进行拼接,然后进入卷积层进行特征提取。之后,我们通过多个ResNetBlock来进行深度的特征提取。最后,我们通过全局平均池化将特征降维,然后经过两个全连接层获得最终的输出。
在_ResNetBlock_中,我们定义了两个卷积层,每个卷积层后面都跟着一个BatchNorm1d和ReLU激活函数。在_ResNet_中,我们定义了一个_make_layer方法来生成多个ResNetBlock。在这个方法中,我们也定义了一个downsample层,用于将输入的特征进行下采样,使得特征维度和输出维度相同。最后,我们将三个特征拼接成一个特征输入到ResNet中进行特征提取。
阅读全文