用matlab实现奈奎斯特稳定判据
时间: 2023-07-20 20:04:37 浏览: 270
奈奎斯特稳定判据是判断系统稳定性的重要方法之一,其判据是:对于一个开环传递函数 $G(s)$,若其特征方程的根全部在左半平面,则系统是稳定的。
在 MATLAB 中,可以使用 `nyquist` 函数来绘制 Nyquist 曲线,并通过曲线上的点的数量和位置来判断系统的稳定性。具体实现步骤如下:
1. 定义开环传递函数 $G(s)$,并将其转化为传递函数形式:
```matlab
s = tf('s');
G = ... % 定义开环传递函数
H = 1; % 反馈路径为1
T = feedback(G,H); % 构造闭环传递函数
```
2. 使用 `nyquist` 函数绘制 Nyquist 曲线:
```matlab
nyquist(T);
```
这将会在当前图形窗口中绘制出 Nyquist 曲线,其中红点表示传递函数的极点,绿点表示传递函数的零点。
3. 根据曲线上的点的数量和位置来判断系统的稳定性:
- 若曲线经过原点且穿过虚轴,说明系统是不稳定的。
- 若曲线不经过原点但穿过虚轴,说明系统是稳定的但不是相对稳定的。
- 若曲线没有穿过虚轴,说明系统是稳定的。
在 MATLAB 中,可以通过 `nyquist` 函数返回的曲线信息来自动判断系统的稳定性:
```matlab
[re,im] = nyquist(T);
if any(im == 0) && sum(re<0) == length(re)
disp('系统是稳定的');
else
disp('系统是不稳定的');
end
```
这将会输出系统是否稳定的结果。其中,`any(im == 0)` 判断曲线是否经过原点(即是否有零点),`sum(re<0) == length(re)` 判断曲线是否在左半平面(即是否有极点)。
阅读全文