解释代码 train_idx += list(np.random.choice(range(a * 1000, (a + 1) * 1000), size=600, replace=False))
时间: 2024-05-21 09:13:56 浏览: 44
这段代码的功能是从一个指定区间内随机选择600个数,并将这600个数以列表的形式存储在 train_idx 变量中。具体来说,代码中的 range(a * 1000, (a + 1) * 1000) 表示一个区间,其中 a 表示一个整数,* 1000是为了将 a 转化为这个区间的左端点,+ 1是为了将 a 转化为这个区间的右端点加1。size=600 表示要从这个区间里面随机选择600个数,replace=False 表示不允许重复选择。最终,train_idx 变量就存储了这600个随机数的列表。
相关问题
import os import pickle import cv2 import matplotlib.pyplot as plt import numpy as np from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from keras.models import Sequential from keras.optimizers import adam_v2 from keras_preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer def load_data(filename=r'/root/autodl-tmp/RML2016.10b.dat'): with open(r'/root/autodl-tmp/RML2016.10b.dat', 'rb') as p_f: Xd = pickle.load(p_f, encoding="latin-1") # 提取频谱图数据和标签 spectrograms = [] labels = [] train_idx = [] val_idx = [] test_idx = [] np.random.seed(2016) a = 0 for (mod, snr) in Xd: X_mod_snr = Xd[(mod, snr)] for i in range(X_mod_snr.shape[0]): data = X_mod_snr[i, 0] frequency_spectrum = np.fft.fft(data) power_spectrum = np.abs(frequency_spectrum) ** 2 spectrograms.append(power_spectrum) labels.append(mod) train_idx += list(np.random.choice(range(a * 6000, (a + 1) * 6000), size=3600, replace=False)) val_idx += list(np.random.choice(list(set(range(a * 6000, (a + 1) * 6000)) - set(train_idx)), size=1200, replace=False)) a += 1 # 数据预处理 # 1. 将频谱图的数值范围调整到0到1之间 spectrograms_normalized = spectrograms / np.max(spectrograms) # 2. 对标签进行独热编码 label_binarizer = LabelBinarizer() labels_encoded= label_binarizer.fit_transform(labels) # transfor the label form to one-hot # 3. 划分训练集、验证集和测试集 # X_train, X_temp, y_train, y_temp = train_test_split(spectrograms_normalized, labels_encoded, test_size=0.15, random_state=42) # X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) spectrogramss = np.array(spectrograms_normalized) print(spectrogramss.shape) labels = np.array(labels) X = np.vstack(spectrogramss) n_examples = X.shape[0] test_idx = list(set(range(0, n_examples)) - set(train_idx) - set(val_idx)) np.random.shuffle(train_idx) np.random.shuffle(val_idx) np.random.shuffle(test_idx) X_train = X[train_idx] X_val = X[val_idx] X_test = X[test_idx] print(X_train.shape) print(X_val.shape) print(X_test.shape) y_train = labels[train_idx] y_val = labels[val_idx] y_test = labels[test_idx] print(y_train.shape) print(y_val.shape) print(y_test.shape) # X_train = np.expand_dims(X_train,axis=-1) # X_test = np.expand_dims(X_test,axis=-1) # print(X_train.shape) return (mod, snr), (X_train, y_train), (X_val, y_val), (X_test, y_test) 这是我的数据预处理代码
你的数据预处理代码看起来很完整。它首先加载pickle文件,然后提取频谱图数据和标签。接下来,它对频谱图数据进行归一化处理,并对标签进行独热编码。最后,它将数据集划分为训练集、验证集和测试集,并返回这些数据集。
在代码中,你还有一些注释掉的代码段,例如对数据集进行划分的部分。如果你打算使用这些划分代码,你可以取消注释相应的行。另外,如果你的频谱图数据维度是二维的,你可能需要使用`np.expand_dims`函数将其扩展为三维,以便与Conv2D层兼容。
如果你还有其他问题或需要进一步帮助,请随时问我。
解释train_idx = list(np.random.choice(range(0, n_examples), size=n_train, replace=False))
此代码行的目的是从0到n_examples(总示例数)之间的数字中随机选择n_train个数字,而不重复选择同一个数字,然后将这些数字存储在一个列表train_idx中。它使用了numpy中的随机选择函数np.random.choice(),其中参数range(0, n_examples)表示从0到n_examples之间的数字,size=n_train表示选择n_train个数字,replace=False表示不重复选择同一个数字。最后,将结果转换为列表形式并将其存储在train_idx中。
阅读全文