用pytorch打印UNET
时间: 2023-11-12 18:05:42 浏览: 152
使用pytorch实现论文中的unet网络
以下是使用 PyTorch 打印 U-Net 模型的示例代码:
```python
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self):
super().__init__()
self.down1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.down2 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.up1 = nn.Sequential(
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.output = nn.Conv2d(64, 3, kernel_size=1)
def forward(self, x):
x = self.down1(x)
x = self.down2(x)
x = self.up1(x)
x = self.output(x)
return x
model = UNet()
print(model)
```
这段代码定义了一个简单的 U-Net 模型,并使用 `print(model)` 将其打印出来。该模型有两个下采样层和一个上采样层,同时对最终的输出进行了卷积。这个示例代码仅供参考,实际的 U-Net 模型可能会更加复杂。
阅读全文