learning_rate = 1e-3 optim = torch.optim.Adam(net.parameters(), lr=learning_rate)什么意思

时间: 2024-05-22 13:12:15 浏览: 129
这段代码定义了学习率为0.001的Adam优化器,并将其应用于神经网络net的所有参数。Adam是一种常用的梯度下降优化算法,通过调整参数来最小化损失函数,从而使神经网络更好地拟合训练数据。学习率是优化器中一个重要的超参数,控制每一次参数更新的步长大小,影响训练速度和模型性能。在这里,学习率设置为0.001,即每次参数更新的步长为0.001。
相关问题

下面代码转化为paddle2.2.2代码 :log_dir = './logs/pretrain' if not os.path.isdir(log_dir): os.makedirs(log_dir) writer = SummaryWriter(log_dir) learning_rate = 1e-4 isp = torch.load('isp/ISP_CNN.pth').cuda() for k,v in isp.named_parameters(): v.requires_grad=False predenoiser = torch.load('./predenoising/PreDenoising.pth') for k,v in predenoiser.named_parameters(): v.requires_grad=False denoiser = RViDeNet(predenoiser=predenoiser).cuda() initial_epoch = findLastCheckpoint(save_dir=save_dir) if initial_epoch > 0: print('resuming by loading epoch %03d' % initial_epoch) denoiser = torch.load(os.path.join(save_dir, 'model_epoch%d.pth' % initial_epoch)) initial_epoch += 1 opt = optim.Adam(denoiser.parameters(), lr = learning_rate) # Raw data takes long time to load. Keep them in memory after loaded. gt_raws = [None] * len(gt_paths) iso_list = [1600,3200,6400,12800,25600] a_list = [3.513262,6.955588,13.486051,26.585953,52.032536] g_noise_var_list = [11.917691,38.117816,130.818508,484.539790,1819.818657] if initial_epoch==0: step=0 else: step = (initial_epoch-1)*int(len(gt_paths)/batch_size) temporal_frames_num = 3

``` import os import paddle from paddle import nn from paddle.nn import functional as F from paddle.io import DataLoader from paddle.vision.datasets import ImageFolder from paddle.optimizer import Adam from paddle.utils.tensorboard import SummaryWriter log_dir = './logs/pretrain' if not os.path.isdir(log_dir): os.makedirs(log_dir) writer = SummaryWriter(log_dir) learning_rate = 1e-4 isp = paddle.load('isp/ISP_CNN.pdparams') for k, v in isp.named_parameters(): v.stop_gradient = True predenoiser = paddle.load('./predenoising/PreDenoising.pdparams') for k, v in predenoiser.named_parameters(): v.stop_gradient = True denoiser = RViDeNet(predenoiser=predenoiser) initial_epoch = findLastCheckpoint(save_dir=save_dir) if initial_epoch > 0: print('resuming by loading epoch %03d' % initial_epoch) denoiser.set_state_dict(paddle.load(os.path.join(save_dir, 'model_epoch%d.pdparams' % initial_epoch))) initial_epoch += 1 opt = Adam(denoiser.parameters(), lr=learning_rate) # Raw data takes long time to load. Keep them in memory after loaded. gt_raws = [None] * len(gt_paths) iso_list = [1600, 3200, 6400, 12800, 25600] a_list = [3.513262, 6.955588, 13.486051, 26.585953, 52.032536] g_noise_var_list = [11.917691, 38.117816, 130.818508, 484.539790, 1819.818657] if initial_epoch == 0: step = 0 else: step = (initial_epoch - 1) * int(len(gt_paths) / batch_size) temporal_frames_num = 3 ```

# 创建文件夹 sample_dir = 'AutoEncoder' if not os.path.exists(sample_dir): os.makedirs(sample_dir) model = AutoEncoder().to(device) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr= learning_rate, weight_decay=1e-5) Train_Loss = [] # 训练编码-解码的性能,损失即与原图像求均方误差 for epoch in range(num_epochs): model.train() for img, _ in dataloader: img = Variable(img).to(device) output = model(img) loss = criterion(output, img) optimizer.zero_grad() loss.backward() optimizer.step() Train_Loss.append(loss.item()) #如果是标量则直接用.item()提取出来,存放的位置在CPU print('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, num_epochs, loss.item())) save_image(output, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1))) torch.save(model.state_dict(), './conv_autoencoder.pth')

这段代码实现了一个自编码器的训练,具体可以分为以下几个步骤: 1.创建一个名为 AutoEncoder 的类,该类继承自 nn.Module,其中定义了编码器和解码器部分的网络结构。 2.定义损失函数为均方误差(MSE)损失。 3.定义优化器为 Adam 优化器,学习率为 learning_rate,L2 正则化系数为 1e-5。 4.定义一个空列表 Train_Loss,用于存储每个 epoch 的训练损失。 5.开始进行训练,循环 num_epochs 次。 6.将模型设为训练模式,即 model.train()。 7.从数据加载器 dataloader 中加载一个批次的图像数据 img。 8.将图像数据 img 转为 PyTorch 变量并放到 GPU 上。 9.将图像输入自编码器模型,得到输出 output。 10.计算输出 output 和原始图像 img 之间的 MSE 损失,并将梯度清零。 11.反向传播计算梯度并更新模型参数。 12.将本次训练的损失 loss 存储到 Train_Loss 列表中。 13.每个 epoch 完成后,输出本次训练的 epoch 数、总 epoch 数、训练损失 loss。 14.将输出的图像保存到样本目录 sample_dir 中。 15.将训练好的模型参数保存到 conv_autoencoder.pth 文件中。 总体来说,这段代码实现了一个自编码器的训练过程,其中的关键步骤包括定义模型、损失函数和优化器,以及训练过程中的前向传播、反向传播和参数更新。

相关推荐

#LSTM #from tqdm import tqdm import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" import time #GRUmodel=GRU(feature_size,hidden_size,num_layers,output_size) #GRUmodel=GRUAttention(7,5,1,2).to(device) model=lstm(7,20,2,1).to(device) model.load_state_dict(torch.load("LSTMmodel1.pth",map_location=device))#pytorch 导入模型lstm(7,20,4,1).to(device) loss_function=nn.MSELoss() lr=[] start=time.time() start0 = time.time() optimizer=torch.optim.Adam(model.parameters(),lr=0.5) scheduler = ReduceLROnPlateau(optimizer, mode='min',factor=0.5,patience=50,cooldown=60,min_lr=0,verbose=False) #模型训练 trainloss=[] epochs=2000 best_loss=1e10 for epoch in range(epochs): model.train() running_loss=0 lr.append(optimizer.param_groups[0]["lr"]) #train_bar=tqdm(train_loader)#形成进度条 for i,data in enumerate(train_loader): x,y=data optimizer.zero_grad() y_train_pred=model(x) loss=loss_function(y_train_pred,y.reshape(-1,1)) loss.backward() optimizer.step() running_loss+=loss.item() trainloss.append(running_loss/len(train_loader)) scheduler.step(trainloss[-1]) #模型验证 model.eval() validation_loss=0 validationloss=[] with torch.no_grad(): #validation_bar=tqdm(validation_loader) for j,data in enumerate(validation_loader): x_validation,y_validation=data y_validation_pred=model(x_validation) validationrunloss=loss_function(y_validation_pred,y_validation.reshape(-1,1)) validation_loss+=validationrunloss #validation_bar.desc="loss:{:.4f}".format(validation_loss/len(validation_loader)) validation_loss=validation_loss/len(validation_loader) validationloss.append(validation_loss) end=time.time() print("learningrate:%.5f,epoch:[%5d/%5d]time:%.2fs, train_loss:%.5f,validation_loss:%.6f" % (lr[-1],epoch, epochs, (end - start),trainloss[-1],validationloss[-1])) start = time.time() if validationloss[-1]<best_loss: best_loss=validationloss[-1] torch.save(model.state_dict,"LSTMmodel1.pth") #torch.save(model.state_dict,"LSTMmodel.pth") end0 = time.time() print("the total training time is :%.2fmin" % ((end0 - start0) / 60)) 报错:Expected state_dict to be dict-like, got <class 'method'>.

最新推荐

recommend-type

关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)

在PyTorch中,`torch.optim`是一个非常重要的模块,用于实现各种优化算法,如随机梯度下降(SGD)、Adam、Adagrad等。它提供了便捷的方式来进行模型参数的更新,以最小化损失函数。在本文中,我们将深入探讨如何灵活...
recommend-type

java-ssm+vue旅游资源网站实现源码(项目源码-说明文档)

旅游资源网站的主要使用者分为管理员和用户,实现功能包括管理员:首页、个人中心、用户管理、景点信息管理、购票信息管理、酒店信息管理、客房类型管理、客房信息管理、客房预订管理、交流论坛、系统管理,用户:首页、个人中心、购票信息管理、客房预订管理、我的收藏管理,前台首页;首页、景点信息、酒店信息、客房信息、交流论坛、红色文化、个人中心、后台管理、客服等功能。 项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7+ 后端技术:ssm 前端技术:Vue 关键技术:springboot、SSM、vue、MYSQL、MAVEN 数据库工具:Navicat、SQLyog
recommend-type

【高创新】基于粒子群优化算法PSO-Transformer-BiLSTM实现故障识别Matlab实现.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

这里收集那些神奇的产品经理为我们带来的意想不到的产品功能和改版,又称_MDZZ_PM_awesome-pm.zip

这里收集那些神奇的产品经理为我们带来的意想不到的产品功能和改版,又称_MDZZ_PM_awesome-pm
recommend-type

WebLogic集群配置与管理实战指南

"Weblogic 集群管理涵盖了WebLogic服务器的配置、管理和监控,包括Adminserver、proxyserver、server1和server2等组件的启动与停止,以及Web发布、JDBC数据源配置等内容。" 在WebLogic服务器管理中,一个核心概念是“域”,它是一个逻辑单元,包含了所有需要一起管理的WebLogic实例和服务。域内有两类服务器:管理服务器(Adminserver)和受管服务器。管理服务器负责整个域的配置和监控,而受管服务器则执行实际的应用服务。要访问和管理这些服务器,可以使用WebLogic管理控制台,这是一个基于Web的界面,用于查看和修改运行时对象和配置对象。 启动WebLogic服务器时,可能遇到错误消息,需要根据提示进行解决。管理服务器可以通过Start菜单、Windows服务或者命令行启动。受管服务器的加入、启动和停止也有相应的步骤,包括从命令行通过脚本操作或在管理控制台中进行。对于跨机器的管理操作,需要考虑网络配置和权限设置。 在配置WebLogic服务器和集群时,首先要理解管理服务器的角色,它可以是配置服务器或监视服务器。动态配置允许在运行时添加和移除服务器,集群配置则涉及到服务器的负载均衡和故障转移策略。新建域的过程涉及多个配置任务,如服务器和集群的设置。 监控WebLogic域是确保服务稳定的关键。可以监控服务器状态、性能指标、集群数据、安全性、JMS、JTA等。此外,还能对JDBC连接池进行性能监控,确保数据库连接的高效使用。 日志管理是排查问题的重要工具。WebLogic提供日志子系统,包括不同级别的日志文件、启动日志、客户端日志等。消息的严重级别和调试功能有助于定位问题,而日志过滤器则能定制查看特定信息。 应用分发是WebLogic集群中的重要环节,支持动态分发以适应变化的需求。可以启用或禁用自动分发,动态卸载或重新分发应用,以满足灵活性和可用性的要求。 最后,配置WebLogic的Web组件涉及HTTP参数、监听端口以及Web应用的部署。这些设置直接影响到Web服务的性能和可用性。 WebLogic集群管理是一门涉及广泛的技术学科,涵盖服务器管理、集群配置、监控、日志管理和应用分发等多个方面,对于构建和维护高性能的企业级应用环境至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python列表操作大全:你不能错过的10大关键技巧

![Python列表操作大全:你不能错过的10大关键技巧](https://blog.finxter.com/wp-content/uploads/2020/06/graphic-1024x576.jpg) # 1. Python列表基础介绍 Python列表是Python中最基本的数据结构之一,它是一个可变的序列类型,可以容纳各种数据类型,如整数、浮点数、字符串、甚至其他列表等。列表用方括号`[]`定义,元素之间用逗号分隔。例如: ```python fruits = ["apple", "banana", "cherry"] ``` 列表提供了丰富的操作方法,通过索引可以访问列表中的
recommend-type

编写完整java程序计算"龟兔赛跑"的结果,龟兔赛跑的起点到终点的距离为800米,乌龟的速度为1米/1000毫秒,兔子的速度为1.2米/1000毫秒,等兔子跑到第600米时选择休息120000毫秒,请编写多线程程序计算龟兔赛跑的结果。

```java public class TortoiseAndHareRace { private static final int TOTAL_DISTANCE = 800; private static final int TORTOISE_SPEED = 1 * 1000; // 1米/1000毫秒 private static final int RABBIT_SPEED = 1.2 * 1000; // 1.2米/1000毫秒 private static final int REST_TIME = 120000; // 兔子休息时间(毫秒)
recommend-type

AIX5.3上安装Weblogic 9.2详细步骤

“Weblogic+AIX5.3安装教程” 在AIX 5.3操作系统上安装WebLogic Server是一项关键的任务,因为WebLogic是Oracle提供的一个强大且广泛使用的Java应用服务器,用于部署和管理企业级服务。这个过程对于初学者尤其有帮助,因为它详细介绍了每个步骤。以下是安装WebLogic Server 9.2中文版与AIX 5.3系统配合使用的详细步骤: 1. **硬件要求**: 硬件配置应满足WebLogic Server的基本需求,例如至少44p170aix5.3的处理器和足够的内存。 2. **软件下载**: - **JRE**:首先需要安装Java运行环境,可以从IBM开发者网站下载适用于AIX 5.3的JRE,链接为http://www.ibm.com/developerworks/java/jdk/aix/service.html。 - **WebLogic Server**:下载WebLogic Server 9.2中文版,可从Bea(现已被Oracle收购)的官方网站获取,如http://commerce.bea.com/showallversions.jsp?family=WLSCH。 3. **安装JDK**: - 首先,解压并安装JDK。在AIX上,通常将JRE安装在`/usr/`目录下,例如 `/usr/java14`, `/usr/java5`, 或 `/usr/java5_64`。 - 安装完成后,更新`/etc/environment`文件中的`PATH`变量,确保JRE可被系统识别,并执行`source /etc/environment`使更改生效。 - 在安装过程中,确保接受许可协议(设置为“yes”)。 4. **安装WebLogic Server**: - 由于中文环境下可能出现问题,建议在英文环境中安装。设置环境变量`LANG=US`,然后运行安装命令,如:`export LANG=US; java -jar -Xmx500m server921_ccjk_generic.jar`。 - 安装路径选择`/opt`,确保在安装前有足够空间,如遇到磁盘空间不足,可以使用`chfs`命令扩展`/opt`, `/usr/`, 和 `/tmp`分区。 5. **检查和扩容磁盘空间**: - 在开始安装前,使用`chfs -a size=XXXXM /partition_name`命令检查并扩展所需分区的大小,例如:`chfs -a size=4000M /usr`, `chfs -a size=5000M /opt`, 和 `chfs -a size=1000M /tmp`。 6. **启动设置**: - 安装完成后,为了方便日后自动启动WebLogic Server,需要设置其开机启动。这通常涉及到修改系统服务配置文件或者使用特定工具来管理启动脚本。 7. **确认JDK版本**: 在安装JDK前,通过`java -version`命令检查已安装的JDK版本。例如,可能看到的版本信息是“Java 1.5.0”。 注意,以上步骤是基于描述中给出的版本和环境,实际操作时请根据当前的WebLogic Server和AIX版本进行适应性调整。在安装过程中,务必遵循Oracle或IBM提供的官方文档,以获取最新的安装指南和技术支持。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依