4、 写出高斯噪声污染图像和椒盐噪声污染图像的模型,并写出处理这两种噪声的算法的伪代码。
时间: 2023-11-22 13:55:44 浏览: 59
高斯噪声模型:
对于一幅灰度图像 $I(x,y)$ ,高斯噪声可以表示为:
$$
I'(x,y) = I(x,y) + n(x,y)
$$
其中 $n(x,y)$ 是高斯分布的随机噪声,均值为 $0$ ,方差为 $\sigma^2$ 。
椒盐噪声模型:
对于一幅灰度图像 $I(x,y)$ ,椒盐噪声可以表示为:
$$
I'(x,y) = \begin{cases}
0, & \text{with probability } p \\
255, & \text{with probability } 1-p
\end{cases}
$$
其中 $p$ 是噪声密度。
处理高斯噪声算法的伪代码:
```
Input: 带有高斯噪声的灰度图像I,高斯噪声方差sigma
Output: 去噪后的灰度图像I'
for each pixel (x,y) in I do:
I'(x,y) = 0
sum = 0
for i from -k to k do:
for j from -k to k do:
if x+i >= 0 and x+i < width and y+j >= 0 and y+j < height then:
w = exp(-(i^2+j^2)/(2*sigma^2)) / (2*pi*sigma^2)
I'(x,y) += w * I(x+i,y+j)
sum += w
I'(x,y) /= sum
return I'
```
处理椒盐噪声算法的伪代码:
```
Input: 带有椒盐噪声的灰度图像I,噪声密度p,邻域大小k
Output: 去噪后的灰度图像I'
for each pixel (x,y) in I do:
count = 0
for i from -k to k do:
for j from -k to k do:
if x+i >= 0 and x+i < width and y+j >= 0 and y+j < height then:
if I(x+i,y+j) == 0 or I(x+i,y+j) == 255 then:
count += 1
if count > k^2 * p then:
I'(x,y) = median of I in the (2k+1)×(2k+1) neighborhood of (x,y)
else:
I'(x,y) = I(x,y)
return I'
```
阅读全文