弧长法求非线性振动幅频响应matlab实例
时间: 2023-07-13 17:06:34 浏览: 155
用matlab求频率响应
4星 · 用户满意度95%
以下是一个使用弧长法求解非线性振动幅频响应的MATLAB示例代码:
```matlab
function [w, A] = arc_length_method()
% Define system parameters
m = 1;
k = 1;
beta = 0.1;
w0 = sqrt(k/m);
% Define initial conditions
x0 = 0;
v0 = 1;
% Define the function handle for the ODE system
fun = @(t, y) [y(2); -k/m*y(1) - beta/m*y(2)^3];
% Define the Jacobian of the ODE system
jac = @(t, y) [0, 1; -k/m - 3*beta/m*y(2)^2, -beta/m*9*y(2)^2];
% Define the arc length continuation parameters
ds = 0.01; % Step size
s = 0; % Initial arc length parameter
s_max = 10; % Maximum arc length parameter
tol = 1e-6; % Tolerance for convergence
max_iter = 100; % Maximum number of iterations
% Initialize the solution vectors
w = [];
A = [];
% Perform the arc length continuation method
while s < s_max
% Define the initial guess for the next solution
if isempty(w)
% First solution is the linear system
y_guess = [x0; v0];
w_guess = w0;
else
% Use previous solution as guess for next solution
y_guess = y_next;
w_guess = w_next;
end
% Perform the Newton-Raphson iteration
for iter = 1:max_iter
% Solve the ODE system using the current guess
[t, y] = ode45(fun, [0, 2*pi/w_guess], y_guess);
% Calculate the residual and Jacobian
r = [y(end, 1) - cos(w_guess*t(end)); s - s_prev - ds];
J = [y(end, 2)*(-sin(w_guess*t(end))), w_guess*sin(w_guess*t(end)); ...
jac(t(end), y(end, :)), zeros(2, 1)];
% Solve the linear system to update the guess
delta = -J\r;
y_next = y(end, :)' + delta(1:2);
w_next = w_guess + delta(3);
% Check for convergence
if norm(delta) < tol
break;
end
% Update the guess for the next iteration
y_guess = y_next;
w_guess = w_next;
end
% Add the solution to the output vectors
w = [w; w_next];
A = [A; y_next(1)];
% Update the continuation parameters
s_prev = s;
s = s_prev + ds;
end
% Plot the amplitude-frequency response
plot(w, A);
xlabel('Frequency (rad/s)');
ylabel('Amplitude');
title('Amplitude-Frequency Response using Arc Length Method');
end
```
在这个示例中,我们定义了一个质量为1、弹性系数为1、阻尼系数为0.1的非线性振动系统,并使用弧长法求解其振幅-频率响应。我们使用一个简单的二阶ODE解算器(ode45)来解决ODE系统,使用牛顿-拉夫逊迭代来更新每个解的初始猜测,直到收敛到所需的精度。最后,我们将每个解的振幅与其频率绘制在图表中。
请注意,这只是一个示例,您需要根据您的具体问题进行修改和调整。
阅读全文