基于姿态估计的方法的人体动作识别代码

时间: 2023-09-15 22:05:29 浏览: 156
### 回答1: 以下是基于姿态估计的人体动作识别代码的示例: 首先需要安装相关的Python库,例如OpenCV和OpenPose。 ``` pip install opencv-python pip install opencv-contrib-python pip install pyyaml pip install opencv-python-headless pip install opencv-contrib-python-headless pip install matplotlib pip install tensorflow==2.4.0 pip install keras==2.4.3 pip install pandas pip install scikit-learn ``` 然后,我们可以使用OpenPose提取人体姿态,并将其作为输入来识别人体动作。以下是示例代码: ``` import cv2 import os import numpy as np import pandas as pd from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout from sklearn.model_selection import train_test_split # Load OpenPose model protoFile = "path/to/pose/deploy/prototxt" weightsFile = "path/to/pose/caffemodel" net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile) # Define function to extract pose keypoints def getKeypoints(frame, net): blob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (368, 368), (0, 0, 0), swapRB=False, crop=False) net.setInput(blob) output = net.forward() H = output.shape[2] W = output.shape[3] points = [] for i in range(18): probMap = output[0, i, :, :] minVal, prob, minLoc, point = cv2.minMaxLoc(probMap) x = (frame.shape[1] * point[0]) / W y = (frame.shape[0] * point[1]) / H if prob > 0.1: points.append((int(x), int(y))) else: points.append(None) return points # Define function to read data def readData(path): data = pd.read_csv(path) X = [] y = [] for i in range(len(data)): filename = data['filename'][i] label = data['label'][i] cap = cv2.VideoCapture(filename) frames = [] while True: ret, frame = cap.read() if not ret: break frame = cv2.resize(frame, (640, 480)) points = getKeypoints(frame, net) frames.append(points) X.append(frames) y.append(label) return X, y # Define function to prepare data for LSTM def prepareData(X, y): X = np.array(X) y = np.array(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) return X_train, X_test, y_train, y_test # Define LSTM model model = Sequential() model.add(LSTM(units=64, input_shape=(None, 36))) model.add(Dropout(0.5)) model.add(Dense(units=3, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Load data and prepare for training X, y = readData("path/to/data.csv") X_train, X_test, y_train, y_test = prepareData(X, y) y_train = pd.get_dummies(y_train).values y_test = pd.get_dummies(y_test).values # Train LSTM model model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=50, batch_size=32) # Save trained model model.save("path/to/model.h5") ``` 在上述示例代码中,我们首先使用OpenPose提取每个视频帧的姿态关键点。然后,我们读取数据并将其准备为LSTM模型可以处理的格式。接下来,我们定义了一个LSTM模型并对其进行训练。最后,我们保存了训练好的模型以供以后使用。 请注意,此示例代码仅用于说明目的。实际应用中,您需要根据您的数据和任务进行修改和调整。 ### 回答2: 基于姿态估计的人体动作识别代码通常包括以下几个步骤: 1. 数据预处理:从摄像头或视频中获取人体动作数据,并进行预处理。预处理包括图像的裁剪、尺寸调整等操作,确保输入数据的统一格式和大小。 2. 关节点提取:使用姿态估计算法(如OpenPose)对预处理后的图像进行关节点提取。关节点是人体动作的关键标志,通常包括头部、颈部、肩部、手肘、膝盖等关节位置。 3. 特征工程:根据提取的关节点信息,进行特征工程的处理。可以使用多种方法,如计算关节之间的角度、距离、速度等,以及关节点之间的连线长度等。 4. 特征选择:根据实际需求,选择最相关的特征作为输入,去除冗余或不相关的特征。 5. 数据分类与训练:使用机器学习算法或深度学习模型,对所选特征进行训练和分类。常见的机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)等,而常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等。 6. 动作识别:根据训练得到的模型,对新的动作数据进行识别。可以通过预测概率或类别标签的方式,判断输入数据所属的动作类别。 基于姿态估计的人体动作识别代码需要掌握计算机视觉、机器学习和深度学习等相关知识,并使用相应的开源库和工具对数据进行处理和模型训练。同时,还需要有一定的数据集和标注的工作,以获取具有代表性的训练和测试数据。 ### 回答3: 基于姿态估计的人体动作识别代码主要包括以下几个步骤: 1. 数据准备:首先,需要收集包含不同人体动作的数据集,每个数据都包含人体姿态信息和动作标签。数据集可以通过运动捕捉系统、深度相机或传感器等设备获取。然后,将这些数据划分为训练集和测试集,用于模型训练和评估。 2. 姿态估计:使用姿态估计算法(例如OpenPose)对每个帧的图像或视频进行处理,提取人体的关节点信息。关节点信息可以包括人体的头、肩膀、手臂、腿部等部位的位置和方向。 3. 特征提取:从姿态估计得到的关节点信息中提取特征。常用的特征提取方法包括相对关节点位置、关节点间的距离、角度、速度等。可以根据具体任务的要求选择合适的特征。 4. 动作分类:使用分类算法对提取的特征进行训练和分类,将不同的动作分为不同的类别。常见的分类算法包括支持向量机(SVM)、决策树、随机森林等。训练时,将特征向量与相应的动作标签进行匹配,建立分类模型。测试时,使用模型对新的动作数据进行预测。 5. 评估与优化:使用测试集对训练的模型进行评估,计算分类的准确率、精确度、召回率等指标。根据评估结果可以调整模型参数、特征提取方法、分类算法等,进一步优化动作识别的性能。 总结:基于姿态估计的人体动作识别代码主要包括数据准备、姿态估计、特征提取、动作分类等步骤。通过对训练集的学习,可以让计算机理解并判断人体的不同动作,在实际应用中可以用于体育训练、健康监测、安防系统等领域。

相关推荐

最新推荐

recommend-type

基于MediaPipe人体姿态识别

【MediaPipe人体姿态识别】是GoogleResearch开发的一款多媒体机器学习模型应用框架,广泛应用于Google的各种产品,如GoogleLens、ARCore等。它提供了一个名为BlazePose的实时人体姿态追踪算法,能够精确预测33个身体...
recommend-type

lxml-5.0.1-cp37-cp37m-win32.whl

lxml 是一个用于 Python 的库,它提供了高效的 XML 和 HTML 解析以及搜索功能。它是基于 libxml2 和 libxslt 这两个强大的 C 语言库构建的,因此相比纯 Python 实现的解析器(如 xml.etree.ElementTree),lxml 在速度和功能上都更为强大。 主要特性 快速的解析和序列化:由于底层是 C 实现的,lxml 在解析和序列化 XML/HTML 文档时非常快速。 XPath 和 CSS 选择器:支持 XPath 和 CSS 选择器,这使得在文档中查找特定元素变得简单而强大。 清理和转换 HTML:lxml 提供了强大的工具来清理和转换不规范的 HTML,比如自动修正标签和属性。 ETree API:提供了类似于 ElementTree 的 API,但更加完善和强大。 命名空间支持:相比 ElementTree,lxml 对 XML 命名空间提供了更好的支持。
recommend-type

slim-0.5.8-py3-none-any.whl

whl软件包,直接pip install安装即可
recommend-type

【赠】新营销4.0:新营销,云时代(PDF).pdf

【赠】新营销4.0:新营销,云时代(PDF)
recommend-type

codsys的FileOpenSave文件的读取与保存

里面有网盘资料!!!!!有例程,不用担心实现不了。 保证利用codesys的FileOpenSave功能块进行读取和下载文件。 目的:使用FileOpensave进行操作,保证项目的可执行性。
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。