用鸢尾花数据做基于网格CLIQUE算法聚类算法
时间: 2024-05-17 19:16:25 浏览: 267
好的,我会尽力回答你的问题。
首先,鸢尾花数据集是一个经典的机器学习数据集,包含了三种不同品种的鸢尾花,每种花有四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。该数据集可以用于分类和聚类任务。
网格CLIQUE算法是一种基于密度的聚类算法,它的主要思想是将数据空间划分为一个个网格单元,然后寻找密度满足一定条件的网格单元,并将这些网格单元合并成簇。
下面是用鸢尾花数据做基于网格CLIQUE算法聚类的步骤:
1. 将数据空间划分成网格单元。可以选择固定大小的网格或者基于数据密度自适应调整网格大小。
2. 对每个网格单元计算密度,并找到密度大于等于给定阈值的所有网格单元。这些网格单元称为核心网格单元。
3. 将所有与核心网格单元在同一行或同一列上的网格单元合并成一个簇。
4. 重复步骤2和步骤3,直到所有核心网格单元都被处理。
5. 将剩余的网格单元分配到最近的簇中。
6. 得到聚类结果。
需要注意的是,网格CLIQUE算法对于不同的数据集可能需要调整不同的参数,例如网格大小、密度阈值等。
希望这能回答你的问题。
相关问题
用鸢尾花数据做基于网格CLIQUE算法聚类算法代码
以下是基于网格CLIQUE算法的鸢尾花数据聚类算法代码:
```python
import numpy as np
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
data = iris.data
# 定义距离函数
def distance(x, y):
return np.sqrt(np.sum((x - y) ** 2))
# 定义网格大小
grid_size = 0.2
# 计算网格数量
n_grid = int(np.ceil((np.max(data, axis=0) - np.min(data, axis=0)) / grid_size))
# 初始化网格
grid = [[] for i in range(n_grid[0] * n_grid[1])]
# 将数据点划分到网格中
for i, x in enumerate(data):
grid_index = int((x[0] - np.min(data, axis=0)[0]) // grid_size) * n_grid[1] + int((x[1] - np.min(data, axis=0)[1]) // grid_size)
grid[grid_index].append(i)
# 定义CLIQUE算法
def clique(cluster, min_pts):
# 定义核心对象集合
core = set()
for i in cluster:
count = 0
for j in cluster:
if i != j and distance(data[i], data[j]) <= eps:
count += 1
if count >= min_pts:
core.add(i)
# 定义聚类结果
clusters = []
visited = set()
# 遍历核心对象
for i in core:
if i not in visited:
visited.add(i)
cluster = set()
cluster.add(i)
neighbors = set(j for j in core if distance(data[i], data[j]) <= eps)
while neighbors:
j = neighbors.pop()
if j not in visited:
visited.add(j)
cluster.add(j)
new_neighbors = set(j for j in core if distance(data[i], data[j]) <= eps)
neighbors.update(new_neighbors - visited)
clusters.append(cluster)
return clusters
# 定义聚类结果
clusters = []
eps = 0.6
min_pts = 5
# 对每个网格中的数据点进行聚类
for i in range(n_grid[0] * n_grid[1]):
if grid[i]:
cluster = clique(grid[i], min_pts)
for c in cluster:
clusters.append([grid[i][j] for j in c])
# 输出聚类结果
for i, c in enumerate(clusters):
print("Cluster %d:" % (i + 1))
print([iris.target_names[iris.target[j]] for j in c])
```
该代码实现了基于网格CLIQUE算法的鸢尾花数据聚类,将数据点划分到网格中,并对每个网格中的数据点进行聚类。输出了聚类结果,每个聚类中包含的鸢尾花类型。
用鸢尾花数据做基于网格CLIQUE算法聚类算法的代码
好的,下面是用鸢尾花数据做基于网格CLIQUE算法聚类算法的 Python 代码:
```python
import numpy as np
from sklearn import datasets
# 鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 网格CLIQUE算法
class GridCLIQUE():
def __init__(self, grid_size=0.5, density_threshold=5):
self.grid_size = grid_size
self.density_threshold = density_threshold
def fit(self, X):
n_samples, n_features = X.shape
# 网格划分
grid_x = int(np.ceil((np.max(X[:, 0]) - np.min(X[:, 0])) / self.grid_size))
grid_y = int(np.ceil((np.max(X[:, 1]) - np.min(X[:, 1])) / self.grid_size))
grids = np.zeros((grid_x, grid_y), dtype=np.int)
for i in range(n_samples):
x, y = X[i, :2]
x_idx = int(np.floor((x - np.min(X[:, 0])) / self.grid_size))
y_idx = int(np.floor((y - np.min(X[:, 1])) / self.grid_size))
grids[x_idx, y_idx] += 1
# 密度阈值
density = np.zeros((grid_x, grid_y), dtype=np.int)
for i in range(grid_x):
for j in range(grid_y):
x_min = max(0, i - 1)
x_max = min(grid_x - 1, i + 1)
y_min = max(0, j - 1)
y_max = min(grid_y - 1, j + 1)
neighbor_grids = grids[x_min:x_max+1, y_min:y_max+1]
density[i, j] = np.sum(neighbor_grids) - grids[i, j]
threshold = np.percentile(density, 100 - self.density_threshold)
# 核心网格单元
core_grids = np.argwhere(density >= threshold)
n_core_grids = core_grids.shape[0]
core_labels = np.zeros(n_core_grids, dtype=np.int)
for i in range(n_core_grids):
x, y = core_grids[i]
if core_labels[i] == 0:
core_labels[i] = i + 1
x_min = max(0, x - 1)
x_max = min(grid_x - 1, x + 1)
y_min = max(0, y - 1)
y_max = min(grid_y - 1, y + 1)
neighbor_grids = grids[x_min:x_max+1, y_min:y_max+1]
neighbor_density = density[x_min:x_max+1, y_min:y_max+1]
for j in range(n_core_grids):
if i != j and core_labels[j] == 0:
x2, y2 = core_grids[j]
if x_min <= x2 <= x_max and y_min <= y2 <= y_max:
if neighbor_density[x2-x_min, y2-y_min] >= threshold:
core_labels[j] = core_labels[i]
# 簇合并
cluster_labels = np.zeros((grid_x, grid_y), dtype=np.int)
for i in range(n_core_grids):
x, y = core_grids[i]
label = core_labels[i]
if cluster_labels[x, y] == 0:
cluster_labels[x, y] = label
x_min = max(0, x - 1)
x_max = min(grid_x - 1, x + 1)
y_min = max(0, y - 1)
y_max = min(grid_y - 1, y + 1)
neighbor_labels = cluster_labels[x_min:x_max+1, y_min:y_max+1]
for j in range(n_core_grids):
if i != j and core_labels[j] == label:
x2, y2 = core_grids[j]
if x_min <= x2 <= x_max and y_min <= y2 <= y_max:
neighbor_labels[core_grids[j, 0]-x_min, core_grids[j, 1]-y_min] = label
# 分配剩余网格单元
for i in range(grid_x):
for j in range(grid_y):
if cluster_labels[i, j] == 0:
x_min = max(0, i - 1)
x_max = min(grid_x - 1, i + 1)
y_min = max(0, j - 1)
y_max = min(grid_y - 1, j + 1)
neighbor_labels = cluster_labels[x_min:x_max+1, y_min:y_max+1]
unique_labels = np.unique(neighbor_labels)
if unique_labels.shape[0] == 1:
cluster_labels[i, j] = unique_labels[0]
else:
cluster_labels[i, j] = unique_labels[np.argmax(np.bincount(neighbor_labels.flatten()))]
self.labels_ = cluster_labels.reshape(-1)
return self
# 聚类
grid_clique = GridCLIQUE(grid_size=0.5, density_threshold=5)
labels = grid_clique.fit(X[:, :2]).labels_
# 可视化
import matplotlib.pyplot as plt
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
```
其中,`GridCLIQUE` 类实现了网格CLIQUE算法,`grid_size` 和 `density_threshold` 分别为网格大小和密度阈值,`fit` 方法用于聚类。
代码中只用了鸢尾花数据的前两个特征(即花萼长度和花萼宽度),并将聚类结果可视化。
阅读全文