用pytorch写一段完整的四元数卷积
时间: 2023-05-26 07:05:08 浏览: 124
以下是使用PyTorch实现的四元数卷积代码示例:
```python
import torch
import torch.nn as nn
class QuaternionConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1):
super(QuaternionConv2d, self).__init__()
self.conv_real = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
self.conv_i = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
self.conv_j = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
self.conv_k = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
def forward(self, x_real, x_i, x_j, x_k):
out_real = self.conv_real(x_real) - self.conv_i(x_i) - self.conv_j(x_j) - self.conv_k(x_k)
out_i = self.conv_real(x_i) + self.conv_i(x_real) + self.conv_j(x_k) - self.conv_k(x_j)
out_j = self.conv_real(x_j) - self.conv_i(x_k) + self.conv_j(x_real) + self.conv_k(x_i)
out_k = self.conv_real(x_k) + self.conv_i(x_j) - self.conv_j(x_i) + self.conv_k(x_real)
return out_real, out_i, out_j, out_k
```
这是一个实现四元数卷积的简单的PyTorch模块,它继承了PyTorch中的nn.Module类。该模块有四个输入张量x_real、x_i、x_j和x_k,代表真实部分、虚部i、虚部j和虚部k。四个卷积核按照四元数乘法规则进行卷积操作,并返回四个输出张量out_real、out_i、out_j和out_k,代表四元数卷积的结果。
您可以通过在PyTorch的nn.Sequential容器中使用该模块来构建四元数卷积网络。
阅读全文