约瑟夫环:编号为1,2,3,…,n的n个人按顺时针方向围坐一圈,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止。从他在顺时针方向上的下一人开始重新从1报数,如此下去,直到所有人全部出列。编程

时间: 2023-06-05 14:47:20 浏览: 194
以下是一个 Python 代码实现约瑟夫环问题的过程: ```python def josephus(n, m): # 初始化编号列表 nums = list(range(1, n+1)) # 初始化当前报数的索引 index = 0 # 当列表中还有元素时 while len(nums) > 0: # 计算当前要出列的人的索引 index = (index + m - 1) % len(nums) # 输出出列的人的编号 print(nums.pop(index)) # 所有人已全部出列 print("游戏结束!") # 测试 josephus(5, 2) ``` 以上代码中,`josephus` 函数接受两个参数:总人数 `n` 和报数上限 `m`。在函数中,我们首先初始化一个编号列表 `nums`,用来存储所有人的编号。然后,我们用一个 `while` 循环不断进行报数和出列的操作,直到列表中的所有元素都被弹出,即所有人都已出列。在循环中,我们使用公式 `(index + m - 1) % len(nums)` 计算出当前要出列的人的索引。最后,我们输出出列的人的编号,以及游戏结束的提示。
相关问题

实验名称:约瑟夫环\n\n问题描述:约瑟夫环问题的一种描述是:编号为1,2,...,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针

### 回答1: 方向自1开始顺序报数,报到m时停止报数。报m的人将他的密码告诉旁边的人,然后从圈中删除他,由他的下一个人重新从1开始报数,报到m时再停止报数,如此下去,直到所有人都被删除。最后一个被删除的人将是谁?他的密码是多少? 这个问题可以用递归或循环的方式来解决。递归的方法比较简单,每次找到要删除的人,然后递归调用函数,直到只剩下一个人为止。循环的方法需要用到一个队列,每次将要删除的人放入队列尾部,然后将队列头部的人删除,直到只剩下一个人为止。 ### 回答2: 每报数到m时,报数者出局,并将他手中的密码作为下一个密码。直到剩下最后一个人时,他手中的密码就是最后的答案。 约瑟夫环问题实际上是一种经典的数学游戏,而它的解决方法也十分有趣。我们可以通过编写程序或手工模拟的方法,求解在不同条件下的答案。 \n 在解决约瑟夫环问题中,我们可以运用多种算法来求解,其中最常见的有递推法、数学公式法、链表法等。以递推法为例,我们可以先将问题简化,假设n=1时的情况已经解决,那么我们考虑怎么通过n-1的情况,得到n的情况的答案: 我们设f[i]表示i个人的情况下最后存在的人的编号,则当i=n时,有f[n]=(f[n-1]+m)%n(因为我们需要将数列“循环”起来),而当i<n时,则f[i]=(f[i-1]+m)%i,而我们要求的,就是f[n],也就是n个人的情况下最后留下的人的编号。 总体上来说,约瑟夫环问题在日常生活中并不太会用到,但它却是一道很好的编程考题,帮助我们提高算法能力和代码能力,也锻炼了我们对数学思维的创造力。此外,这个问题因为它的趣味性也经常用于教育和培训中。 ### 回答3: 每到第m个人,就让他出列并报出他的密码,然后再从他的顺时针方向的下一个人开始从1报数,直到报数到m,再让他出列并报出他的密码,如此循环,直到所有人全部出列为止。其实质是一个递归问题:设f(n,m)表示还剩下n个人没有出列,报数上限为m时,最后出列的人的编号为多少。则f(n,m)=(f(n-1,m)+m)%n,且f(1,m)=0。\n\n解析:约瑟夫环问题是一种典型的数学问题,用公式描述非常有趣。在实际生活中,类似的问题其实也有很多,比如班级抽奖、企业招聘、考试成绩排名等等,都可以运用类似的算法来处理。对于求解这种问题,递归法常常是最简单、最高效的算法。递归就是为了解决重复的问题而生的,可以把一个大问题转化成一个或多个小问题,以便更容易解决。在约瑟夫环问题中,我们可以从简单的情况开始考虑,比如只有1个人或2个人的情况。对于一般情况,我们可以考虑如何把问题转化成规模更小的问题,然后利用递归求解。这种问题的解法在计算机科学中也有广泛的应用,例如树形结构的遍历、图的搜索等等。需要注意的是,在实际编程中,受到内存大小、运行效率等限制,递归方法可能不是最优的解决方案,还需要根据具体问题进行取舍。

问题描述:约瑟夫环问题的一种描述是:编号为1,2,...,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,

### 回答1: 当报数为m的倍数时,报数者要出圈,直到最后只剩下一个人为止。问最后留下的人的编号是多少? 这就是著名的约瑟夫环问题。解决这个问题可以使用数学归纳法,或者模拟整个过程,依次淘汰每个报数为m的倍数的人,直到只剩下一个人为止。最后留下的人的编号可以通过数学公式计算得出。 ### 回答2: 每报数到m时,报数者出列,从下一个人开始重新报数,直到所有人出列为止,问最后一个出列者的密码是多少? 约瑟夫环问题是一个经典的数学问题,在研究组合数学和离散数学时经常出现。这个问题看似简单,实则颇有难度。在解决这个问题时,需要运用到递推、数列、模运算等多种数学方法。 解决这个问题的方法有很多种,其中比较常用的是递推法和数学公式法: 1.递推法 递推法是一种从前往后推导的方法,通过已知的条件,求解未知的结果。在解决约瑟夫环问题时,可以使用一个递推公式来依次计算每一个出列者的密码,直到最后一个人被淘汰。 递推公式如下:f[1]=0, f[i]=(f[i-1]+m)%i 其中,f[i]表示i个人报数到m时最后一个出列者的密码,m为报数上限值。 通过这个公式,可以计算出n个人报数到m时最后一个出列者的密码f[n]。 2.数学公式法 数学公式法是一种直接求解问题的方法,通过找到问题的规律,建立数学模型,得出问题的解。 在解决约瑟夫环问题时,可以通过数学推导得出如下的公式:f(n,m)=(f(n-1,m)+m)%n 其中,f(n,m)表示n个人报数到m时最后一个出列者的密码,再通过递推的方式可以求出f(n-1,m)的值。 通过这个公式,可以直接求解出n个人报数到m时最后一个出列者的密码f(n,m)。 总之,解决约瑟夫环问题需要理解和掌握递推法和数学公式法,并运用到递推和模运算等数学方法中,熟练掌握这些方法,可以在解决约瑟夫环问题时事半功倍。 ### 回答3: 每报数到m的人要出圈,直到圈中只剩下一个人为止。问剩下的这个人的密码是多少? 约瑟夫环问题其实是一个经典的数学问题。它可以通过递推公式来求解。假设f(i, m)表示i个人围成一圈,每数到m就出局最后剩下的那个人的编号,那么当i=1时,f(1, m)=0;当i>1时,f(i, m)=[f(i-1, m)+m]%i([x]表示x向下取整)。特别地,当i=2时,f(2, m)=(f(1, m)+m)%2,因为当只有两个人时,每数到m就会出一个人,所以剩下的那个人就是另外一个人。知道了递推公式之后,我们可以使用递归或迭代的方法进行求解。 例子:当n=6、m=3,圆桌中6人的编号分别为1、2、3、4、5、6,最后剩下的那个人的编号是4。 解法:首先计算出f(2,3)=1,表示当只有两个人时,每数到3就会出一个人,所以编号为1的人会出圈,最后剩下的人是编号为2的人。接下来计算f(3,3),根据递推公式有f(3,3)=(f(2,3)+3)%3=1,表示最后剩下的那个人的编号是3。再接着计算f(4,3),f(4,3)=(f(3,3)+3)%4=1,同样表示最后剩下的那个人的编号是3。继续计算f(5,3),f(5,3)=(f(4,3)+3)%5=4,表示最后剩下的那个人的编号是4。最后计算f(6,3),f(6,3)=(f(5,3)+3)%6=3,表示最后剩下的那个人的编号是4。 因此,当n=6、m=3时,最后剩下的那个人的编号是4。
阅读全文

相关推荐

最新推荐

recommend-type

白色大气风格的商务团队公司模板下载.zip

白色大气风格的商务团队公司模板下载.zip
recommend-type

vb+access学生学籍管理系统(系统+论文+摘要与目录+实习报告)(2024p5).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

VB+access药品供销存贮系统(系统+封面+开题报告+论文+任务书+答辩PPT+外文文献+中文翻译)(2024d0).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

白色大气风格的手机电脑商城模板下载.zip

白色大气风格的手机电脑商城模板下载.zip
recommend-type

SecureCRT-9.6.0-mac

SecureCRT_9.6.0__mac
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。