subplot(1,3,2);plot(0:255,Y);title('变换函数');grid on; axis tight;
时间: 2024-05-18 14:12:08 浏览: 108
这是一段 MATLAB 代码,用于画出灰度图像的变换函数。其中,subplot(1,3,2) 表示将画布分成 1 行 3 列,当前绘图区域为第 2 个子图;plot(0:255,Y) 表示在 x 轴为 0 到 255 的范围内,绘制变换函数 Y 的图像;title('变换函数') 表示给图像添加标题为“变换函数”;grid on 表示添加网格线;axis tight 表示自动调整坐标轴范围,使图像充满整个绘图区域。
相关问题
解读一下 figure subplot(211) plot(1:length(T_train),T_train, 'r-', 1:length(T_sim1),T_sim1, 'b-.', 'LineWidth', 1) legend('实际值', 'BP预测值') xlabel('训练集') ylabel('负荷(kW)') axis tight string = {['BP 训练集:(RMSE= ' num2str(RMSE1) ' MAPE = ' num2str(MAPE1) ')']}; title(string) subplot(212) bar(err1) xlabel('训练集') ylabel('Error') axis tight figure subplot(211) plot(1:length(T_test),T_test,'r-', 1:length(T_sim2),T_sim2, 'b-.', 'LineWidth', 1) legend('实际值', 'BP预测值') xlabel('测试集') ylabel('负荷(kW)') axis tight string = {['BP 测试集:(RMSE= ' num2str(RMSE2) ' MAPE = ' num2str(MAPE2) ')']}; title(string) subplot(212) bar(err2) xlabel('训练集') ylabel('Error') axis tight
这段代码是用于绘制两个图形的,每个图形都有两个子图。第一个图形的第一个子图使用subplot(211)函数,用于绘制训练集的实际负载值和BP神经网络的预测负载值,分别使用红色实线和蓝色点划线进行绘制。legend函数用于添加图例,xlabel和ylabel函数分别用于添加x轴和y轴标签,axis tight函数则是调整坐标轴范围。title函数用于添加子图的标题,其中包含了RMSE和MAPE两个指标的值。第二个子图使用bar函数绘制训练集的误差,用于观察BP神经网络训练的效果。
第一个图形的第二个子图使用subplot(212)函数,用于绘制测试集的实际负载值和BP神经网络的预测负载值,同样使用红色实线和蓝色点划线进行绘制。legend、xlabel、ylabel、axis tight和title函数的作用与第一个子图相同。第二个子图使用bar函数绘制测试集的误差,用于评估BP神经网络的预测效果。
matlab代码function probeData(varargin)if (nargin == 1) settings = deal(varargin{1}); fileNameStr = settings.fileName; elseif (nargin == 2) [fileNameStr, settings] = deal(varargin{1:2}); if ~ischar(fileNameStr) error('File name must be a string'); end else error('Incorect number of arguments'); end[fid, message] = fopen(fileNameStr, 'rb'); if (fid > 0) % Move the starting point of processing. Can be used to start the % signal processing at any point in the data record (e.g. for long % records). fseek(fid, settings.skipNumberOfBytes, 'bof'); % Find number of samples per spreading code samplesPerCode = round(settings.samplingFreq / ... (settings.codeFreqBasis / settings.codeLength)); if (settings.fileType==1) dataAdaptCoeff=1; else dataAdaptCoeff=2; end % Read 100ms of signal [data, count] = fread(fid, [1, dataAdaptCoeff100samplesPerCode], settings.dataType); fclose(fid); if (count < dataAdaptCoeff100samplesPerCode) % The file is to short error('Could not read enough data from the data file.'); end %--- Initialization --------------------------------------------------- figure(100); clf(100); timeScale = 0 : 1/settings.samplingFreq : 5e-3; %--- Time domain plot ------------------------------------------------- if (settings.fileType==1) subplot(2, 2, 3); plot(1000 * timeScale(1:round(samplesPerCode/2)), ... data(1:round(samplesPerCode/2))); axis tight; grid on; title ('Time domain plot'); xlabel('Time (ms)'); ylabel('Amplitude'); else data=data(1:2:end) + 1i .* data(2:2:end); subplot(3, 2, 4); plot(1000 * timeScale(1:round(samplesPerCode/2)), ... real(data(1:round(samplesPerCode/2)))); axis tight; grid on; title ('Time domain plot (I)'); xlabel('Time (ms)'); ylabel('Amplitude'); subplot(3, 2, 3); plot(1000 * timeScale(1:round(samplesPerCode/2)), ... imag(data(1:round(samplesPerCode/2)))); axis tight; grid on; title ('Time domain plot (Q)'); xlabel('Time (ms)'); ylabel('Amplitude'); end %--- Frequency domain plot -------------------------------------------- if (settings.fileType==1) %Real Data subplot(2,2,1:2); pwelch(data, 32768, 2048, 32768, settings.samplingFreq/1e6) else % I/Q Data subplot(3,2,1:2); [sigspec,freqv]=pwelch(data, 32768, 2048, 32768, settings.samplingFreq,'twosided'); plot(([-(freqv(length(freqv)/2:-1:1));freqv(1:length(freqv)/2)])/1e6, ... 10*log10([sigspec(length(freqv)/2+1:end); sigspec(1:length(freqv)/2)])); end axis tight; grid on; title ('Frequency domain plot'); xlabel('Frequency (MHz)'); ylabel('Magnitude'); %--- Histogram -------------------------------------------------------- if (settings.fileType == 1) subplot(2, 2, 4); hist(data, -128:128) dmax = max(abs(data)) + 1; axis tight; adata = axis; axis([-dmax dmax adata(3) adata(4)]); grid on; title ('Histogram'); xlabel('Bin'); ylabel('Number in bin'); else subplot(3, 2, 6); hist(real(data), -128:128) dmax = max(abs(data)) + 1; axis tight; adata = axis; axis([-dmax dmax adata(3) adata(4)]); grid on; title ('Histogram (I)'); xlabel('Bin'); ylabel('Number in bin'); subplot(3, 2, 5); hist(imag(data), -128:128) dmax = max(abs(data)) + 1; axis tight; adata = axis; axis([-dmax dmax adata(3) adata(4)]); grid on; title ('Histogram (Q)'); xlabel('Bin'); ylabel('Number in bin'); end else %=== Error while opening the data file ================================ error('Unable to read file %s: %s.', fileNameStr, message); end % if (fid > 0)翻译成python
抱歉,由于MATLAB和Python的语法和结构有所不同,将MATLAB代码翻译成Python代码需要对代码进行一定程度的重构和修改。以下是一个可能的Python代码实现,仅供参考:
```python
import numpy as np
import matplotlib.pyplot as plt
def probeData(*args):
if len(args) == 1:
settings = args[0]
fileNameStr = settings['fileName']
elif len(args) == 2:
fileNameStr, settings = args
if not isinstance(fileNameStr, str):
raise ValueError('File name must be a string')
else:
raise ValueError('Incorrect number of arguments')
with open(fileNameStr, 'rb') as fid:
# Move the starting point of processing.
# Can be used to start the signal processing at any point in the data record (e.g. for long records).
fid.seek(settings['skipNumberOfBytes'], 0)
# Find number of samples per spreading code
samplesPerCode = round(settings['samplingFreq'] / (settings['codeFreqBasis'] / settings['codeLength']))
if settings['fileType'] == 1:
dataAdaptCoeff = 1
else:
dataAdaptCoeff = 2
# Read 100ms of signal
data = np.fromfile(fid, dtype=settings['dataType'], count=dataAdaptCoeff*100*samplesPerCode)
fid.close()
if len(data) < dataAdaptCoeff*100*samplesPerCode:
# The file is too short
raise ValueError('Could not read enough data from the data file.')
#--- Initialization ---------------------------------------------------
plt.figure(100)
plt.clf()
timeScale = np.arange(0, 5e-3, 1/settings['samplingFreq'])
#--- Time domain plot -------------------------------------------------
if settings['fileType'] == 1:
plt.subplot(2, 2, 3)
plt.plot(1000*timeScale[:round(samplesPerCode/2)], data[:round(samplesPerCode/2)])
plt.axis('tight')
plt.grid(True)
plt.title('Time domain plot')
plt.xlabel('Time (ms)')
plt.ylabel('Amplitude')
else:
data = data[::2] + 1j*data[1::2]
plt.subplot(3, 2, 4)
plt.plot(1000*timeScale[:round(samplesPerCode/2)], np.real(data[:round(samplesPerCode/2)]))
plt.axis('tight')
plt.grid(True)
plt.title('Time domain plot (I)')
plt.xlabel('Time (ms)')
plt.ylabel('Amplitude')
plt.subplot(3, 2, 3)
plt.plot(1000*timeScale[:round(samplesPerCode/2)], np.imag(data[:round(samplesPerCode/2)]))
plt.axis('tight')
plt.grid(True)
plt.title('Time domain plot (Q)')
plt.xlabel('Time (ms)')
plt.ylabel('Amplitude')
#--- Frequency domain plot --------------------------------------------
if settings['fileType'] == 1:
#Real Data
plt.subplot(2, 2, 1)
plt.subplot(2, 2, 2)
f, Pxx = signal.welch(data, fs=settings['samplingFreq'], nperseg=32768, noverlap=2048, nfft=32768)
plt.plot(f/1e6, 10*np.log10(Pxx))
else:
# I/Q Data
plt.subplot(3, 2, 1)
plt.subplot(3, 2, 2)
f, Pxx = signal.welch(data, fs=settings['samplingFreq'], nperseg=32768, noverlap=2048, nfft=32768, return_onesided=False)
plt.plot((np.concatenate((-f[len(f)//2:], f[:len(f)//2])))/1e6, 10*np.log10(np.concatenate((Pxx[len(Pxx)//2:], Pxx[:len(Pxx)//2]))))
plt.axis('tight')
plt.grid(True)
plt.title('Frequency domain plot')
plt.xlabel('Frequency (MHz)')
plt.ylabel('Magnitude')
#--- Histogram --------------------------------------------------------
if settings['fileType'] == 1:
plt.subplot(2, 2, 4)
plt.hist(data, bins=np.arange(-128, 129))
dmax = np.max(np.abs(data)) + 1
plt.axis([-dmax, dmax, *plt.axis()[2:]])
plt.grid(True)
plt.title('Histogram')
plt.xlabel('Bin')
plt.ylabel('Number in bin')
else:
plt.subplot(3, 2, 6)
plt.hist(np.real(data), bins=np.arange(-128, 129))
dmax = np.max(np.abs(data)) + 1
plt.axis([-dmax, dmax, *plt.axis()[2:]])
plt.grid(True)
plt.title('Histogram (I)')
plt.xlabel('Bin')
plt.ylabel('Number in bin')
plt.subplot(3, 2, 5)
plt.hist(np.imag(data), bins=np.arange(-128, 129))
dmax = np.max(np.abs(data)) + 1
plt.axis([-dmax, dmax, *plt.axis()[2:]])
plt.grid(True)
plt.title('Histogram (Q)')
plt.xlabel('Bin')
plt.ylabel('Number in bin')
```
阅读全文