使用python搭建bp神经网络,能识别mnist.npz
时间: 2024-05-07 16:22:36 浏览: 169
好的,下面是使用Python搭建BP神经网络来识别MNIST数据集:
首先,我们需要导入必要的库:
```python
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```
接着,我们需要加载MNIST数据集:
```python
mnist = np.load('mnist.npz')
train_images = mnist['x_train']
train_labels = mnist['y_train']
test_images = mnist['x_test']
test_labels = mnist['y_test']
```
为了方便,我们将像素值缩放到0到1之间:
```python
train_images = train_images / 255.0
test_images = test_images / 255.0
```
然后,我们需要定义一个BP神经网络模型:
```python
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='sigmoid'),
keras.layers.Dense(10, activation='softmax')
])
```
这个模型包含一个输入层,一个隐藏层和一个输出层。输入层将28x28像素的图像展平为一维数组,隐藏层包含128个神经元,激活函数为sigmoid,输出层包含10个神经元,激活函数为softmax。
接下来,我们需要编译模型:
```python
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
```
在这里,我们使用adam优化器、稀疏交叉熵损失函数和准确率作为指标。
最后,我们可以训练模型并评估其性能:
```python
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```
在这里,我们使用训练集训练模型,迭代10次,然后使用测试集评估模型的性能。
完整代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
mnist = np.load('mnist.npz')
train_images = mnist['x_train']
train_labels = mnist['y_train']
test_images = mnist['x_test']
test_labels = mnist['y_test']
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='sigmoid'),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```
希望能帮到你!
阅读全文