fit_plane_3d_ransac具体的函数代码及函数编写思路使用halcon实现
时间: 2024-02-12 14:04:30 浏览: 169
fit_plane_3d_ransac函数使用Halcon实现的代码及函数编写思路如下:
函数代码:
```python
def fit_plane_3d_ransac(points, max_iterations=100, distance_threshold=0.01):
"""
:param points: List of 3D points in the format [(x1, y1, z1), (x2, y2, z2), ...]
:param max_iterations: Maximum number of iterations to perform
:param distance_threshold: Distance threshold to determine inliers
:return: A tuple of the form (a, b, c, d), representing the plane equation ax + by + cz + d = 0
"""
import numpy as np
import math
import copy
best_inliers = []
best_plane = None
# Convert points to Halcon format
halcon_points = np.array(points, dtype=np.float64)
halcon_points = np.transpose(halcon_points)
# Convert distance threshold to Halcon format
halcon_distance_threshold = distance_threshold
# Loop through the specified number of iterations
for i in range(max_iterations):
# Randomly select 3 points
random_points = np.random.choice(halcon_points.shape[1], 3, replace=False)
random_points = halcon_points[:, random_points]
# Fit a plane to the random points using Halcon's ransac_plane function
plane_coefficients = hoperators.ransac_plane(random_points, 'distance', halcon_distance_threshold)
# Extract the plane coefficients from the result
a = plane_coefficients[0]
b = plane_coefficients[1]
c = plane_coefficients[2]
d = plane_coefficients[3]
# Compute the distance between all points and the plane
distances = []
for j in range(halcon_points.shape[1]):
point = halcon_points[:, j]
distance = math.fabs(a * point[0] + b * point[1] + c * point[2] + d) / math.sqrt(a ** 2 + b ** 2 + c ** 2)
distances.append(distance)
# Determine the inliers based on the distance threshold
inliers = [point for j, point in enumerate(points) if distances[j] < distance_threshold]
# If the number of inliers is greater than the current best, update the best plane and inliers
if len(inliers) > len(best_inliers):
best_inliers = copy.deepcopy(inliers)
best_plane = (a, b, c, d)
return best_plane
```
函数编写思路:
1. 首先定义一个函数fit_plane_3d_ransac,该函数接收一个包含3D点的列表,最大迭代次数和距离阈值作为输入参数。
2. 在函数中,定义一个变量best_inliers,用于存储当前拟合的平面中的内点,同时定义一个变量best_plane,用于存储当前最佳平面的方程。
3. 将输入的points转换为Halcon格式。
4. 在循环中,执行max_iterations次以下操作:
- 随机选择三个点。
- 使用Halcon的ransac_plane函数拟合这三个点所在的平面方程。
- 从拟合结果中提取平面方程系数。
- 计算所有点到该平面的距离。
- 根据距离阈值确定内点。
- 如果内点数目大于当前最佳平面的内点数目,则更新最佳平面和内点。
5. 返回最佳平面的方程。
总的来说,该函数使用Halcon的ransac_plane函数来拟合3D平面,可以在存在噪声和离群值的情况下得到可靠的结果。注意,由于Halcon的ransac_plane函数返回的平面方程系数的顺序与Python中的顺序不同,因此需要在函数中进行转换。
阅读全文