class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x)这是我加的注意力机制模块的代码,我在主干网络的每层采样模块的最后一层MLP后面再加上了这一层SA模块,运行训练程序的时候报错,提示我在调用这个SA模块时,输入的张量大小是:[16, 512, 1],但是在执行F.conv1d时,weight的大小是[256, 1024, 1],其中1024是权重的输入通道数,这与输入的通道数512不匹配,导致了错误。不知道该怎么解决,你可以帮我修改一下代码以解这个问题吗?
时间: 2023-11-12 18:08:25 浏览: 125
问题出在SA模块中的Conv1d层的weight大小与输入张量的通道数不匹配。解决方法是修改SA模块的输入通道数和Conv1d层的输出通道数,使它们匹配。
修改后的代码如下:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv1d(in_channels // reduction, in_channels // reduction, 1, bias=False)
self.fc3 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.relu(y)
y = self.fc3(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
我增加了一个Conv1d层,将输出通道数改为了输入通道数,以和输入张量匹配。同时,我也在代码中加入了Relu激活函数,因为论文中使用了Relu激活函数。你可以根据自己的需求进行修改。
阅读全文