point_world_xyz = np.zeros((rows * cols, 3), np.float32)
时间: 2023-12-01 17:05:06 浏览: 162
这行代码创建了一个形状为(rows * cols, 3)的三维NumPy数组,类型为np.float32。这个数组的每一行代表一个点在三维空间中的坐标,其中第一列为X轴坐标,第二列为Y轴坐标,第三列为Z轴坐标。这里数组的初始值被设置为0,因为还没有任何点的坐标被计算出来。通常情况下,这种数组会被用来存储点云数据,例如在三维重建、物体识别等领域中。
相关问题
gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_fftshift = np.zeros_like(gray_fftshift) M, N = np.meshgrid(np.arange(-cols // 2, cols // 2), np.arange(-rows // 2, rows // 2)) D = np.sqrt(M ** 2 + N ** 2) Z = (rh - r1) * (1 - np.exp(-c * (D ** 2 / d0 ** 2))) + r1 dst_fftshift = Z * gray_fftshift dst_fftshift = (h - l) * dst_fftshift + l dst_ifftshift = np.fft.ifftshift(dst_fftshift) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.real(dst_ifft) dst = np.uint8(np.clip(dst, 0, 255)) return dst
在这个函数中,首先使用np.fft.fft2函数将输入图像进行二维傅里叶变换,然后使用np.fft.fftshift函数将变换结果进行中心化处理。接下来,创建一个与输入图像大小相同的全零数组dst_fftshift,并计算出输入图像的行数和列数。
函数接着使用np.meshgrid函数生成网格坐标,并根据频率域滤波器的公式计算出增益系数Z。然后,将增益系数Z乘以中心化的傅里叶变换结果gray_fftshift,得到增益后的频率域图像dst_fftshift。
接着,将增益后的频率域图像dst_fftshift乘以(h - l),再加上l,得到最终的频率域图像。然后,使用np.fft.ifftshift函数将频率域图像逆中心化,并使用np.fft.ifft2函数将其转换回空间域。最后,将输出图像进行限幅处理,转换为8位无符号整数类型,然后返回输出图像。
def agglr(costVolume, color_left, color_right, maxDis, P1, P2, thres): H = costVolume.shape[0]; W = costVolume.shape[1] imgL = color_left.astype(np.float32); imgR = color_right.astype(np.float32) penalties = np.zeros(shape=(maxDis), dtype=np.float32) aggtwo = np.zeros(shape=(H, W, maxDis), dtype=np.float32) aggfour = np.zeros(shape=(H, W, maxDis), dtype=np.float32) aggtwo[:, 0, :] = costVolume[:, 0, :] aggfour[:, W - 1, :] = costVolume[:, W - 1, :]啥意思
这段代码是实现了一个聚合算法,用于计算左右两个图像之间的视差。其中,costVolume是一个三维的张量,表示各个像素点在不同视差下的代价值;color_left和color_right分别表示左右两张图像的像素值;maxDis表示最大视差值;P1和P2是用于计算代价值的参数;thres是一个阈值,用于控制是否聚合到更多像素。
代码中,首先获取图像的高度和宽度,将左右两张图像转换为浮点数类型。然后定义penalties、aggtwo和aggfour三个张量,分别用于存储惩罚、两个方向的聚合结果和四个方向的聚合结果。在第一列和最后一列分别初始化两个方向的聚合结果。
阅读全文