def predict_from_naive_bayes_model(model, matrix): """Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs. Args: model: A trained model from fit_naive_bayes_model matrix: A numpy array containing word counts Returns: A numpy array containg the predictions from the model """ # *** START CODE HERE *** model = NaiveBayesModel(model['log_class_priors'], model['log_likelihoods']) log_probabilities = [] for i in range(2): log_probabilities.append(np.sum(matrix * model.log_class_priors[i] + model.log_likelihoods[i])) return np.argmax(log_probabilities) # *** END CODE HERE ***代码报错KeyError: 'log_class_priors'请帮我修改
时间: 2023-07-15 16:11:48 浏览: 156
Predictive_Modelling:预测模型
根据错误提示,似乎是找不到字典中的 'log_class_priors' 键。这可能是因为在输入的 `model` 参数中没有包含该键。建议检查一下在 `fit_naive_bayes_model` 函数中生成的训练模型是否有已经正确地包含了 'log_class_priors' 和 'log_likelihoods' 键。
如果模型生成代码本身没有问题,那么你可以尝试检查传递给 `predict_from_naive_bayes_model` 函数的 `model` 参数是否被正确地传递,并且确保该参数包含了 'log_class_priors' 和 'log_likelihoods' 键。
阅读全文