data = np.arange(0,20).reshape(-1,2)

时间: 2023-10-15 09:03:16 浏览: 43
This code creates a NumPy array called `data` with values ranging from 0 to 19, arranged in a 2-dimensional array with 2 columns and as many rows as necessary to accommodate all the values. The `reshape()` method is used to specify the dimensions of the array. The `-1` argument in `reshape()` indicates that the size of that dimension should be automatically calculated based on the other dimensions and the number of values in the array.
相关问题

import numpy as np import random from scipy import stats import pandas as pd import matplotlib.pyplot as plt np.random.seed(1) a=[] for p in range(1,11): k=8 n=100 Sigma = [[1,0.6+0.04p],[0.6+0.04p,1]] res1 = [] for i in range(1,1001): data=np.random.multivariate_normal(np.zeros(2), Sigma, n) X_data=data[:,0] Y_data=data[:,1] Sx=sorted(X_data) Sy=sorted(Y_data) inter_x=np.arange(min(X_data),max(X_data)+(max(X_data)-min(X_data))/k, (max(X_data)-min(X_data))/k) inter_y=np.arange(min(Y_data),max(Y_data)+(max(Y_data)-min(Y_data))/k, (max(Y_data)-min(Y_data))/k) left_inter_x=np.dot(np.ones((n,1)),inter_x[0:k].reshape(1,k)) right_inter_x=np.dot(np.ones((n,1)),inter_x[1:(k+1)].reshape(1,k)) left_inter_y=np.dot(np.ones((n,1)),inter_y[0:k].reshape(1,k)) right_inter_y=np.dot(np.ones((n,1)),inter_y[1:(k+1)].reshape(1,k)) Data1=np.dot(X_data.reshape(n,1), np.ones((1,k))) Data2=np.dot(Y_data.reshape(n,1), np.ones((1,k))) frequx=(left_inter_x<=Data1)(Data1<right_inter_x) frequy=(left_inter_y<=Data2)(Data2<right_inter_y) frequxy = np.dot(frequx.astype(int).T,frequy.astype(int)) pi=np.sum(frequxy,axis=0)/n pj=np.sum(frequxy,axis=1)/n pij=np.dot(pi.reshape(k,1),pj.reshape(1,k)) A=(frequxy-npij)**2/(npij) A[np.isnan(A)]=0 A[np.isinf(A)]=0 stat1=np.sum(A) res1.append(int(stat1>stats.chi2.ppf(0.95,(k-1)**2))) a[p]=np.mean(res1) plt.plot(a)有哪些错误

该代码存在以下错误: 1. 缺少函数声明和主程序入口。 2. 行首缺少空格,不符合 Python 的 PEP8 代码规范。 3. 第一行导入 numpy 库和 random 库,但是代码中没有使用 random 库,可以删除。 4. 缺少对 scipy 库和 pandas 库的导入。 5. 第5行代码中的 Sigma 变量没有正确的缩进,应该缩进4个空格。 6. 第6行代码中的 res1 变量没有正确的缩进,应该缩进4个空格。 7. 第7行代码中应该在 import 后面加上空格。 8. 第9行代码中的 np.random.seed(1) 应该缩进4个空格。 9. 第11行代码中的 a=[] 应该缩进4个空格。 10. 第13行代码中的 p 变量没有正确的缩进,应该缩进4个空格。 11. 第14行代码中的 n 变量没有正确的缩进,应该缩进4个空格。 12. 第15行代码中的 Sigma 变量应该缩进4个空格。 13. 第16-30行代码是一个 for 循环,缩进不正确,应该缩进4个空格。 14. 第17-29行代码中的变量应该缩进8个空格。 15. 第18-20行代码中的 X_data, Y_data, Sx, Sy, inter_x, inter_y 等变量没有正确的缩进,应该缩进8个空格。 16. 第21-24行代码中的 left_inter_x, right_inter_x, left_inter_y, right_inter_y 等变量没有正确的缩进,应该缩进8个空格。 17. 第26行代码中的 Data1, Data2 变量没有正确的缩进,应该缩进8个空格。 18. 第27-28行代码中的 frequx, frequy 变量没有正确的缩进,应该缩进8个空格。 19. 第29行代码中的 frequxy 变量没有正确的缩进,应该缩进8个空格。 20. 第30行代码中的 pi, pj, pij, A 变量没有正确的缩进,应该缩进8个空格。 21. 第32行代码中的 np.isnan(A) 和 np.isinf(A) 应该缩进8个空格。 22. 第34行代码中的 a[p]=np.mean(res1) 应该缩进4个空格。 23. 最后一行代码中的 plt.plot(a) 应该缩进4个空格。 建议修改后的代码如下所示: ```python import numpy as np from scipy import stats import pandas as pd import matplotlib.pyplot as plt def main(): np.random.seed(1) a = [0] * 11 for p in range(1, 11): k = 8 n = 100 Sigma = [[1, 0.6 + 0.04 * p], [0.6 + 0.04 * p, 1]] res1 = [] for i in range(1, 1001): data = np.random.multivariate_normal(np.zeros(2), Sigma, n) X_data = data[:, 0] Y_data = data[:, 1] Sx = sorted(X_data) Sy = sorted(Y_data) inter_x = np.arange(min(X_data), max(X_data) + (max(X_data) - min(X_data)) / k, (max(X_data) - min( X_data)) / k) inter_y = np.arange(min(Y_data), max(Y_data) + (max(Y_data) - min(Y_data)) / k, (max(Y_data) - min( Y_data)) / k) left_inter_x = np.dot(np.ones((n, 1)), inter_x[0:k].reshape(1, k)) right_inter_x = np.dot(np.ones((n, 1)), inter_x[1:(k + 1)].reshape(1, k)) left_inter_y = np.dot(np.ones((n, 1)), inter_y[0:k].reshape(1, k)) right_inter_y = np.dot(np.ones((n, 1)), inter_y[1:(k + 1)].reshape(1, k)) Data1 = np.dot(X_data.reshape(n, 1), np.ones((1, k))) Data2 = np.dot(Y_data.reshape(n, 1), np.ones((1, k))) frequx = (left_inter_x <= Data1) * (Data1 < right_inter_x) frequy = (left_inter_y <= Data2) * (Data2 < right_inter_y) frequxy = np.dot(frequx.astype(int).T, frequy.astype(int)) pi = np.sum(frequxy, axis=0) / n pj = np.sum(frequxy, axis=1) / n pij = np.dot(pi.reshape(k, 1), pj.reshape(1, k)) npij = n * pij A = (frequxy - npij) ** 2 / (npij) A[np.isnan(A)] = 0 A[np.isinf(A)] = 0 stat1 = np.sum(A) res1.append(int(stat1 > stats.chi2.ppf(0.95, (k - 1) ** 2))) a[p] = np.mean(res1) plt.plot(a) if __name__ == '__main__': main() ```

import numpy as np import pickle import math f = open(r'C:\Users\sdnugeo\Desktop\target2.pkl','rb') bi = pickle.load(f) # bi = np.array(bi) data = np.arange(0, 156) print(data) data = data.tolist() # print(data) # 每次抽取1000个数值,共抽取10次 samples = [] c = [] a = 11 r = math.ceil(len(data)/a) print(r) for i in range(a): if len(data) > r : sample = np.random.choice(data, r, replace=False) else: sample = np.random.choice(data, len(data), replace=False) # for s in sample: # data.remove(s) # continue # print(type(sample)) # sample2 = np.array(sample) b = [bi[j] for j in list(sample)] # d = np.array(b) print(type(b)) c.append(b) # c = np.concatenate(c, axis=0) # c = bi[0] print(sample) # print(b) samples.append(sample) for s in sample: data.remove(s) # sample = [s for s in sample if s in data] samples = [np.array(s) for s in samples] samples = np.concatenate(samples, axis=0) c = [np.array(e) for e in c] c = np.concatenate(c, axis=0) # samples = np.array(samples).reshape(-1) print(samples) print(c.shape) 请帮我把这段代码修改成可调用的函数

好的,你想要将这段代码封装成一个函数,可以尝试以下的实现: ```python import numpy as np import pickle import math def sample_data(filepath): f = open(filepath, 'rb') bi = pickle.load(f) data = np.arange(0, 156) data = data.tolist() samples = [] c = [] a = 11 r = math.ceil(len(data)/a) for i in range(a): if len(data) > r: sample = np.random.choice(data, r, replace=False) else: sample = np.random.choice(data, len(data), replace=False) b = [bi[j] for j in list(sample)] c.append(b) samples.append(sample) for s in sample: data.remove(s) samples = [np.array(s) for s in samples] samples = np.concatenate(samples, axis=0) c = [np.array(e) for e in c] c = np.concatenate(c, axis=0) return samples, c ``` 你可以将这个函数保存在一个.py文件中,然后在其他的python文件中,通过import导入并调用该函数。调用方法如下: ```python from your_module import sample_data filepath = r'C:\Users\sdnugeo\Desktop\target2.pkl' samples, c = sample_data(filepath) ``` 其中,filepath是你想要读取的pickle文件的路径。函数返回两个变量,分别为samples和c。

相关推荐

import scipy.io as scio import numpy as np from sklearn.decomposition import PCA from sklearn import svm import matplotlib.pyplot as plt import random from sklearn.datasets import make_blobs test_data = scio.loadmat('D:\\python-text\\AllData.mat') train_data = scio.loadmat('D:\\python-text\\label.mat') print(test_data) print(train_data) data2 = np.concatenate((test_data['B021FFT0'], test_data['IR007FFT0']), axis=0) data3 = train_data['label'] print(data2) print(data3) # print(type(data3)) # print(data4) # print(type(data4)) data2 = data2.tolist() data2 = random.sample(data2, 200) data2 = np.array(data2) data3 = data3.tolist() data3 = random.sample(data3, 200) data3 = np.array(data3) # data4,data3= make_blobs(random_state=6) print(data2) print(data3) # print(type(data3)) # 创建一个高斯内核的支持向量机模型 clf = svm.SVC(kernel='rbf', C=1000) clf.fit(data2,data3.reshape(-1)) pca = PCA(n_components=2) # 加载PCA算法,设置降维后主成分数目为2 pca.fit(data2) # 对样本进行降维 data4 = pca.transform(data2) # 以散点图的形式把数据画出来 plt.scatter(data4[:, 0], data4[:, 1], c=data3,s=30, cmap=plt.cm.Paired) # 建立图像坐标 axis = plt.gca() xlim = axis.get_xlim() ylim = axis.get_ylim() # 生成两个等差数列 xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) # print("xx:", xx) # print("yy:", yy) # 生成一个由xx和yy组成的网格 X, Y = np.meshgrid(xx, yy) # print("X:", X) # print("Y:", Y) # 将网格展平成一个二维数组xy xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) # 画出分界线 axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none') plt.show()修改一下错误

最新推荐

recommend-type

QT5开发及实例配套源代码.zip

QT5开发及实例配套[源代码],Qt是诺基亚公司的C++可视化开发平台,本书以Qt 5作为平台,每个章节在简单介绍开发环境的基础上,用一个小实例,介绍Qt 5应用程序开发各个方面,然后系统介绍Qt 5应用程序的开发技术,一般均通过实例介绍和讲解内容。最后通过三个大实例,系统介绍Qt 5综合应用开发。光盘中包含本书教学课件和书中所有实例源代码及其相关文件。通过学习本书,结合实例上机练习,一般能够在比较短的时间内掌握Qt 5应用技术。本书既可作为Qt 5的学习和参考用书,也可作为大学教材或Qt 5培训用书。
recommend-type

grpcio-1.46.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、