train_gen = train_images.flow_from_directory(directory=train_dir, batch_size=batch_size, shuffle=True,#随机载入 target_size=(im_size, im_size),#修改图片大小 class_mode='categorical')#标签转换成这段代码是什么意思
时间: 2024-02-10 14:18:54 浏览: 80
这段代码是用来创建一个图像数据生成器,可以方便地从指定的目录中加载图像数据进行训练。其中:
- `directory`参数指定了加载数据的目录;
- `batch_size`参数指定了每个batch中包含的样本数;
- `shuffle`参数指定了是否对样本进行随机打乱;
- `target_size`参数指定了将图像调整为的大小;
- `class_mode`参数指定了标签的类型,这里设置为`categorical`表示采用one-hot编码的形式。
相关问题
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
错误信息指出`train_batch_size`不等于`micro_batch_per_gpu`乘以`gradient_accumulation_steps`,这表明在设置深度学习训练参数时,可能忘记了调整batch size以适应梯度累积步骤的数量。当使用`DeepSpeedPlugin`时,通常需要确保批大小(train_batch_size)能被梯度积累步数整除,因为每个微批次会被累积多次。
要解决这个问题,你需要确保`train_batch_size`减去`gradient_accumulation_steps`后的结果能够被`micro_batch_per_gpu`整除。这是一个示例:
```python
# 假设原始train_batch_size = 128
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
# 如果有micro_batch_per_gpu
if args.micro_batch_per_gpu > 0:
# 检查新的train_batch_size是否可以被micro_batch_per_gpu整除
assert args.train_batch_size % args.micro_batch_per_gpu == 0, "train_batch_size should be divisible by micro_batch_per_gpu"
```
这样,`train_batch_size`将会被正确地设置以便与`zero_stage=2`的配置兼容。
dataset.train_batch(batch_size=batch_size)
这段代码是使用dataset对象中的train_batch()方法来获取一个指定大小的训练数据批次。其中,batch_size参数用于指定批次的大小,即每次获取多少个样本进行训练。train_batch()方法会返回一个包含多个样本的数据集对象,可以用于训练模型。通常在训练过程中会多次调用train_batch()方法来获取多个批次的数据进行训练。
阅读全文
相关推荐
















