sparkstreaming读取kafka案例
时间: 2023-10-13 07:20:33 浏览: 130
Sure, 我可以回答您关于SparkStreaming读取kafka案例的问题。
SparkStreaming通过集成Kafka来实现从Kafka中读取数据流,下面是一个实现的案例:
1.首先,在工程中加入以下依赖:
```xml
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.4.0</version>
</dependency>
```
2.然后,创建Kafka配置对象和SparkStreaming上下文对象。
```scala
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "test-group",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val ssc = new StreamingContext(sparkConf, Seconds(5))
```
3.接下来,通过SparkStreaming读取Kafka数据流,并对数据流进行处理。
```scala
val topics = Array("test")
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.map(record => (record.key, record.value))
.filter(x => x._2.contains("error"))
.map(_._2.split(" ")(1))
.foreachRDD(rdd => {
rdd.foreachPartition(records => {
val jedis = new Jedis("localhost")
records.foreach(record => {
jedis.incr(record)
})
jedis.close()
})
})
```
4.最后,启动SparkStreaming程序。
```scala
ssc.start()
ssc.awaitTermination()
```
这就是一个简单的SparkStreaming读取Kafka数据流的实现案例。
希望我的回答对您有所帮助!
阅读全文