def predict(parameters, x_test, y_test):

时间: 2023-10-29 10:05:07 浏览: 29
This looks like a function definition in Python for making predictions on a set of test data using a set of trained parameters. The function takes in three arguments: `parameters`, which represents the trained model parameters, `x_test`, which represents the input test data, and `y_test`, which represents the corresponding output test data. Without seeing the implementation of the function, it's difficult to provide more information on what exactly the function does. However, based on the function name and arguments, it appears to be related to machine learning or data analysis.
相关问题

输出的y_test不受x_test控制

您是对的,我犯了一个错误。对于单个测试样本,您需要将其包装在一个张量中,即`x_test = torch.Tensor([4.0])`,而不是`x_test = torch.Tensor([[4]])`。因为`torch.Tensor()`期望一个可迭代对象作为输入,所以我们使用方括号`[]`将单个值包装起来。 请修改代码如下: ```python import torch x_data = torch.Tensor([[1.0], [2.0], [3.0]]) y_data = torch.Tensor([[2.0], [4.0], [6.0]]) class linearModel(torch.nn.Module): def __init__(self): super(linearModel, self).__init__() self.linear = torch.nn.Linear(1, 1) def forward(self, x): y_hat = self.linear(x) return y_hat model = linearModel() criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(100): y_predict = model(x_data) loss = criterion(y_predict, y_data) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch:', epoch, 'Loss:', loss.item()) x_test = torch.Tensor([4.0]) y_test = model(x_test) print('Prediction:', y_test.item()) ``` 现在,代码应该可以正确输出给定测试数据`x_test`的预测值`y_test`。非常抱歉给您带来的困扰。

from sklearn.tree import DecisionTreeRegressor model2 = DecisionTreeRegressor(random_state=0) model2.fit(x_train, Y_train) y_pred2=model2.predict(x_test) assessing(Y_test,y_pred2),对以上代码调用的模型换成PyTorch模型

使用PyTorch构建回归模型的步骤如下: 1. 导入PyTorch库和相关模块: ```python import torch import torch.nn as nn import torch.optim as optim ``` 2. 定义模型类: ```python class Regressor(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(Regressor, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): out = torch.relu(self.fc1(x)) out = self.fc2(out) return out ``` 3. 定义损失函数和优化器: ```python criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) ``` 4. 训练模型: ```python inputs = torch.from_numpy(x_train).float() labels = torch.from_numpy(y_train).float() for epoch in range(num_epochs): # Forward pass outputs = model(inputs) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 5. 预测并评估模型: ```python with torch.no_grad(): inputs = torch.from_numpy(x_test).float() labels = torch.from_numpy(y_test).float() outputs = model(inputs) loss = criterion(outputs, labels) print('Test Loss: {:.4f}'.format(loss.item())) ``` 完整代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # Define model class class Regressor(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(Regressor, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): out = torch.relu(self.fc1(x)) out = self.fc2(out) return out # Define hyperparameters input_dim = 13 hidden_dim = 10 output_dim = 1 learning_rate = 0.01 num_epochs = 500 # Load data data = np.loadtxt('data/housing.csv', delimiter=',', skiprows=1) x_train = data[:400,:-1] y_train = data[:400,-1] x_test = data[400:,:-1] y_test = data[400:,-1] # Define model, loss function, and optimizer model = Regressor(input_dim, hidden_dim, output_dim) criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) # Train model inputs = torch.from_numpy(x_train).float() labels = torch.from_numpy(y_train).float() for epoch in range(num_epochs): # Forward pass outputs = model(inputs) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # Test model with torch.no_grad(): inputs = torch.from_numpy(x_test).float() labels = torch.from_numpy(y_test).float() outputs = model(inputs) loss = criterion(outputs, labels) print('Test Loss: {:.4f}'.format(loss.item())) ``` 需要注意的是,PyTorch中使用的数据类型是Tensor而不是numpy数组,因此需要使用`torch.from_numpy()`将numpy数组转换为Tensor。同时,在训练模型时需要将inputs和labels都转换为Tensor并调用`backward()`方法进行反向传播,最后使用`optimizer.step()`方法更新模型参数。在预测时需要使用`torch.no_grad()`上下文管理器来关闭梯度计算,以加快运行速度。

相关推荐

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

以下这段代码中的X_val、y_val是来自哪儿呢,没有看到有X和Y的对训练集和测试集的划分的代码,并且这段代码还报错”name 'space_eval' is not defined“,且Xtrain,Xtest,Ytrain,Ytest = TTS(X, y,test_size=0.2,random_state=100)只划分了训练集和测试集,验证集是在哪呢?还有一个问题是以下代码用了五倍交叉验证,所以不需要用这段代码"Xtrain,Xtest,Ytrain,Ytest = TTS(X, y,test_size=0.2,random_state=100)”来划分训练集和测试集了吗:from sklearn.model_selection import cross_val_score from hyperopt import hp, fmin, tpe, Trials from xgboost import XGBRegressor as XGBR # 定义超参数空间 space = { 'max_depth': hp.choice('max_depth', range(1, 10)), 'min_child_weight': hp.choice('min_child_weight', range(1, 10)), 'gamma': hp.choice('gamma', [0, 1, 5, 10]), 'subsample': hp.uniform('subsample', 0.5, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1) } # 定义目标函数 def hyperopt_objective(params): reg = XGBR(random_state=100, n_estimators=22, **params) scores = cross_val_score(reg, X_train, y_train, cv=5) # 五倍交叉验证 return 1 - scores.mean() # 返回平均交叉验证误差的相反数,即最小化误差 # 创建Trials对象以记录调参过程 trials = Trials() # 使用贝叶斯调参找到最优参数组合 best = fmin(hyperopt_objective, space, algo=tpe.suggest, max_evals=100, trials=trials) # 输出最优参数组合 print("Best parameters:", best) # 在最优参数组合下训练模型 best_params = space_eval(space, best) reg = XGBR(random_state=100, n_estimators=22, **best_params) reg.fit(X_train, y_train) # 在验证集上评估模型 y_pred = reg.predict(X_val) evaluation = evaluate_model(y_val, y_pred) # 自定义评估函数 print("Model evaluation:", evaluation)

def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = '/home/aistudio/data/data55032/archive_test.zip' infer_dst_path = '/home/aistudio/data/archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='data/archive_test/alexandrite_6.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束") 以上代码进行DNN预测,根据这段代码写一段续写一段利用这个模型进行宝石预测的GUI界面,其中包含预测结果是否正确的判断功能

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

帮我在下面的代码中添加高斯优化,原代码如下:import numpy as np from sklearn.svm import OneClassSVM from scipy.optimize import minimize def fitness_function(x): """ 定义适应度函数,即使用当前参数下的模型进行计算得到的损失值 """ gamma, nu = x clf = OneClassSVM(kernel='rbf', gamma=gamma, nu=nu) clf.fit(train_data) y_pred = clf.predict(test_data) # 计算错误的预测数量 error_count = len([i for i in y_pred if i != 1]) # 将错误数量作为损失值进行优化 return error_count def genetic_algorithm(x0, bounds): """ 定义遗传算法优化函数 """ population_size = 20 # 种群大小 mutation_rate = 0.1 # 变异率 num_generations = 50 # 迭代次数 num_parents = 2 # 选择的父代数量 num_elites = 1 # 精英数量 num_genes = x0.shape[0] # 参数数量 # 随机初始化种群 population = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(population_size, num_genes)) for gen in range(num_generations): # 选择父代 fitness = np.array([fitness_function(x) for x in population]) parents_idx = np.argsort(fitness)[:num_parents] parents = population[parents_idx] # 交叉 children = np.zeros_like(parents) for i in range(num_parents): j = (i + 1) % num_parents mask = np.random.uniform(size=num_genes) < 0.5 children[i, mask] = parents[i, mask] children[i, ~mask] = parents[j, ~mask] # 变异 mask = np.random.uniform(size=children.shape) < mutation_rate children[mask] = np.random.uniform(bounds[:, 0], bounds[:, 1], size=np.sum(mask)) # 合并种群 population = np.vstack([parents, children]) # 选择新种群 fitness = np.array([fitness_function(x) for x in population]) elites_idx = np.argsort(fitness)[:num_elites] elites = population[elites_idx] # 输出结果 best_fitness = fitness[elites_idx[0]] print(f"Gen {gen+1}, best fitness: {best_fitness}") return elites[0] # 初始化参数 gamma0, nu0 = 0.1, 0.5 x0 = np.array([gamma0, nu0]) bounds = np.array([[0.01, 1], [0.01, 1]]) # 调用遗传算法优化 best_param = genetic_algorithm(x0, bounds) # 在最佳参数下训练模型,并在测试集上进行测试 clf = OneClassSVM(kernel='rbf', gamma=best_param[0], nu=best_param[1]) clf.fit(train_data) y_pred = clf.predict(test_data) # 计算错误的预测数量 error_count = len([i for i in y_pred if i != 1]) print(f"Best fitness: {error_count}, best parameters: gamma={best_param[0]}, nu={best_param[1]}")

import numpy as np import paddle as paddle import paddle.fluid as fluid from PIL import Image import matplotlib.pyplot as plt import os from paddle.fluid.dygraph import Linear from paddle.vision.transforms import Compose, Normalize transform = Compose([Normalize(mean=[127.5],std=[127.5],data_format='CHW')]) print('下载并加载训练数据') train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) print('加载完成') train_data0, train_label_0 = train_dataset[0][0],train_dataset[0][1] train_data0 = train_data0.reshape([28,28]) plt.figure(figsize=(2,2)) print(plt.imshow(train_data0, cmap=plt.cm.binary)) print('train_data0 的标签为: ' + str(train_label_0)) print(train_data0) class mnist(paddle.nn.Layer): def __init__(self): super(mnist,self).__init__() self.fc1 = paddle.fluid.dygraph.Linear(input_dim=28*28, output_dim=100, act='relu') self.fc2 = paddle.fluid.dygraph.Linear(input_dim=100, output_dim=100, act='relu') self.fc3 = paddle.fluid.dygraph.Linear(input_dim=100, output_dim=10,act="softmax") def forward(self, input_): x = fluid.layers.reshape(input_, [input_.shape[0], -1]) x = self.fc1(x) x = self.fc2(x) y = self.fc3(x) return y from paddle.metric import Accuracy model = paddle.Model(mnist()) optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) model.prepare(optim,paddle.nn.CrossEntropyLoss(),Accuracy()) model.fit(train_dataset,test_dataset,epochs=2,batch_size=64,save_dir='multilayer_perceptron',verbose=1) test_data0, test_label_0 = test_dataset[0][0],test_dataset[0][1] test_data0 = test_data0.reshape([28,28]) plt.figure(figsize=(2,2)) print(plt.imshow(test_data0, cmap=plt.cm.binary)) print('test_data0 的标签为: ' + str(test_label_0)) result = model.predict(test_dataset, batch_size=1) print('test_data0 预测的数值为:%d' % np.argsort(result[0][0])[0][-1]) 请给出这一段代码每一行的解释

def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = './archive_test.zip' infer_dst_path = './archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyDNN") model = MyDNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='./archive_test/alexandrite_18.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束")根据这一段代码续写一段利用这个模型进行宝石预测的GUI界面

return data, label def __len__(self): return len(self.data)train_dataset = MyDataset(train, y[:split_boundary].values, time_steps, output_steps, target_index)test_ds = MyDataset(test, y[split_boundary:].values, time_steps, output_steps, target_index)class MyLSTMModel(nn.Module): def __init__(self): super(MyLSTMModel, self).__init__() self.rnn = nn.LSTM(input_dim, 16, 1, batch_first=True) self.flatten = nn.Flatten() self.fc1 = nn.Linear(16 * time_steps, 120) self.relu = nn.PReLU() self.fc2 = nn.Linear(120, output_steps) def forward(self, input): out, (h, c) = self.rnn(input) out = self.flatten(out) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) return outepoch_num = 50batch_size = 128learning_rate = 0.001def train(): print('训练开始') model = MyLSTMModel() model.train() opt = optim.Adam(model.parameters(), lr=learning_rate) mse_loss = nn.MSELoss() data_reader = DataLoader(train_dataset, batch_size=batch_size, drop_last=True) history_loss = [] iter_epoch = [] for epoch in range(epoch_num): for data, label in data_reader: # 验证数据和标签的形状是否满足期望,如果不满足,则跳过这个批次 if data.shape[0] != batch_size or label.shape[0] != batch_size: continue train_ds = data.float() train_lb = label.float() out = model(train_ds) avg_loss = mse_loss(out, train_lb) avg_loss.backward() opt.step() opt.zero_grad() print('epoch {}, loss {}'.format(epoch, avg_loss.item())) iter_epoch.append(epoch) history_loss.append(avg_loss.item()) plt.plot(iter_epoch, history_loss, label='loss') plt.legend() plt.xlabel('iters') plt.ylabel('Loss') plt.show() torch.save(model.state_dict(), 'model_1')train()param_dict = torch.load('model_1')model = MyLSTMModel()model.load_state_dict(param_dict)model.eval()data_reader1 = DataLoader(test_ds, batch_size=batch_size, drop_last=True)res = []res1 = []# 在模型预测时,label 的处理for data, label in data_reader1: data = data.float() label = label.float() out = model(data) res.extend(out.detach().numpy().reshape(data.shape[0]).tolist()) res1.extend(label.numpy().tolist()) # 由于预测一步,所以无需 reshape,直接转为 list 即可title = "t321"plt.title(title, fontsize=24)plt.xlabel("time", fontsize=14)plt.ylabel("irr", fontsize=14)plt.plot(res, color='g', label='predict')plt.plot(res1, color='red', label='real')plt.legend()plt.grid()plt.show()的运算过程

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩