print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train))
时间: 2024-04-03 11:31:50 浏览: 46
这段代码用于计算模型的训练精度和泛化精度,以评估模型的性能。具体来说,代码使用score函数分别计算了在训练集上和测试集上的精度,其中训练精度指的是模型在训练集上的表现,而泛化精度指的是模型在测试集上的表现。精度的范围是0到1,越接近1表示模型的性能越好。
需要注意的是,训练精度和泛化精度的差距越小,说明模型的泛化能力越好,即能够更好地适应新的数据。如果训练精度高而泛化精度低,则可能存在过拟合问题,需要对模型进行调整。反之,如果训练精度和泛化精度都比较低,则可能存在欠拟合问题,需要增加模型的复杂度或者改变模型的结构。
相关问题
wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释
这段代码涉及了三种分类算法:决策树、最近邻分类算法和KNN算法。
首先,代码将数据集分为wine_data和wine_target两部分,其中wine_data是训练集,wine_target是测试集。接着,使用train_test_split函数将wine_data划分为训练集和测试集,其中测试集占总样本的30%。
其次,使用DecisionTreeClassifier类来实现决策树分类算法,其中criterion='entropy'表示使用熵来评价纯度。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用mean_squared_error函数计算预测值和真实值之间的均方误差,使用score函数计算训练集和测试集的分类精度。
接着,使用KNeighborsClassifier类来实现最近邻分类算法和KNN算法,其中n_neighbors表示选取的最近邻的个数。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用score函数计算训练集和测试集的分类精度。
最后,输出训练集和测试集的分类精度。
dtc.predict(wine_target.iloc[:,1:].values) Out[33]: array([2., 2., 2., 3., 1.]) In [34]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[34]: 0.0 In [35]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [39]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[39]: 0.9807692307692307 In [42]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[42]: array([3., 3., 1., 2., 1., 3., 3., 1., 2., 3., 2., 1., 2., 1., 2., 1., 2., 2., 3., 1., 1., 3., 1., 2., 1., 2., 3., 3., 2., 2., 1., 1., 2., 1., 1., 2., 3., 1., 3., 3., 2., 2., 2., 2., 1., 1., 1., 1., 2., 3., 2., 1.]) In [43]: dtr.predict(wine_target.iloc[:,1:].values) Out[43]: array([2., 2., 3., 3., 1.]) In [41]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132
这段代码主要是使用决策树分类器和K最近邻分类器对葡萄酒数据进行分类,其中,训练集和测试集的划分、分类器的建立和训练、模型评估等步骤都有详细的代码实现。最终,通过输出score值和mean_squared_error值,可以评估分类器的精度和性能。可以看出,K最近邻分类器的精度比决策树分类器略低,但仍然达到了很高的水平。
阅读全文