尝试化简这个函数:f(x)=((2x)的阶乘)/(2的2x次方*(x的阶乘)*(x的阶乘))(x为正整数)
时间: 2024-05-29 22:12:06 浏览: 150
计算一个数的阶乘
首先,根据阶乘的定义,(2x)!可以化简为(2x)(2x-1)(2x-2)...3*2*1。
然后,我们可以将分母中的2的2x次方写成(2的x次方)的平方,即2^(2x)=(2^x)^2。
接下来,将分母中的x的阶乘写成x*(x-1)*(x-2)*...3*2*1。
将上述两个式子代入原函数,得到:
f(x)=[(2x)(2x-1)(2x-2)...3*2*1] / [(2^x)^2 * x*(x-1)(x-2)*...3*2*1]
我们发现,分子和分母都包含x*(x-1)(x-2)*...3*2*1这个因式,可以约去:
f(x)=[(2x)(2x-1)(2x-2)...3*2*1] / [(2^x)^2 * x!(x-1)!]
然后,我们可以将分子中的(2x)(2x-1)写成(2x)^2-(2x),(2x-2)(2x-3)写成(2x-2)^2-(2x-2),依此类推,得到:
f(x)=[(2x)^2-(2x)] * [(2x-2)^2-(2x-2)] * ... * [2^2-2] / [(2^x)^2 * x!(x-1)!]
继续化简,分子中每个括号内的两项相减后可以因式分解,得到:
[(2x)^2-(2x)] = 2x(2x-1)
[(2x-2)^2-(2x-2)] = 2(x-1)(2x-3)
[2^2-2] = 2
代入原式,得到:
f(x) = [2x(2x-1) * 2(x-1)(2x-3) * ... * 2] / [(2^x)^2 * x!(x-1)!]
再次约分,可以将分子中的每个2都约去,得到:
f(x) = x(2x-1) * (x-1)(2x-3) * ... * 2 / [(2^x) * x!(x-1)!]
最终,我们得到了化简后的函数表达式。
阅读全文