gtsam库自定义地平面约束(法向量和距离)并且加入到三维激光里程计中完成因子图优化,并且在误差函数中计算雅克比矩阵,使用C++代码示例
时间: 2024-03-16 18:41:02 浏览: 272
好的,我会尽力回答您的问题。首先,您提到的gtsam是一个开源的因子图优化库,用于求解非线性最小二乘问题。在这里,我假设您已经熟悉了gtsam的基本概念和使用方法。
现在,让我们来看看如何自定义一个地平面约束并将其加入到三维激光里程计中。假设我们已经从激光里程计中获得了一些三维点云数据,并且我们希望将它们用于建立一个地图。为了更好地约束地图的形状,我们希望将地图中的地面建模为一个平面,并将其作为一个约束添加到因子图中。
首先,我们需要定义一个地面约束因子。这个因子应该包含地面的法向量和距离。我们可以使用gtsam中的自定义因子来实现这个约束。下面是一个示例代码:
```c++
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/laser/LaserFactor.h>
#include <gtsam/slam/laser/LaserLikelihood.h>
#include <gtsam/slam/laser/LaserPoseFactor.h>
#include <gtsam/slam/laser/LaserProjectionFactor.h>
#include <gtsam/slam/laser/LaserRobotModel.h>
#include <gtsam/slam/laser/RangeFactor.h>
#include <gtsam/slam/laser/Scanner.h>
#include <gtsam/slam/posePrior.h>
#include <gtsam/slam/RangeFactorPose2.h>
#include <gtsam/slam/RangeFactorPose3.h>
#include <gtsam/slam/dataset.h>
using namespace gtsam;
class GroundPlaneFactor : public NoiseModelFactor1<Pose3> {
public:
// Constructor
GroundPlaneFactor(Key poseKey, const Point3& center, const Unit3& normal, double distance, const SharedNoiseModel& model) :
NoiseModelFactor1<Pose3>(model, poseKey), center_(center), normal_(normal), distance_(distance) {}
// Evaluate error
virtual Vector evaluateError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const {
Point3 transformedCenter = pose.transformFrom(center_, H);
Unit3 transformedNormal = pose.rotation().unrotate(normal_);
double transformedDistance = distance_ - transformedNormal.dot(transformedCenter.vector());
return (Vector(1) << transformedDistance).finished();
}
// Clone
virtual boost::shared_ptr<NonlinearFactor> clone() const {
return boost::shared_ptr<NonlinearFactor>(new GroundPlaneFactor(*this));
}
private:
Point3 center_;
Unit3 normal_;
double distance_;
};
```
在上面的代码中,我们定义了一个名为GroundPlaneFactor的自定义因子。它继承了gtsam中的NoiseModelFactor1类,这表示它只有一个位姿变量。我们在构造函数中传入了地平面的中心点(center)、法向量(normal)、距离(distance)和噪声模型(model)。在evaluateError函数中,我们计算了位姿变量经过变换后地平面的距离,并返回这个距离的误差向量。
接下来,我们需要将这个因子加入到因子图中。假设我们已经从激光里程计中得到了一个三维点云数据,并且我们已经根据这些点云数据估计出了机器人的位姿。我们可以将机器人的位姿作为这个因子的位姿变量,并将其加入到因子图中。以下是一个示例代码:
```c++
// Create factor graph and add prior on first pose
NonlinearFactorGraph graph;
Values initialEstimate;
// Add initial estimate for robot pose
Pose3 robotPose(/* pose parameters */);
initialEstimate.insert(/* key */, robotPose);
// Add ground plane constraint
Point3 groundCenter(0, 0, 0);
Unit3 groundNormal(0, 0, 1);
double groundDistance = 0;
SharedNoiseModel groundModel = noiseModel::Isotropic::Sigma(1, 0.1);
boost::shared_ptr<GroundPlaneFactor> groundFactor(new GroundPlaneFactor(/* key */, groundCenter, groundNormal, groundDistance, groundModel));
graph.add(groundFactor);
// Optimize graph
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
Values result = optimizer.optimize();
```
在上面的代码中,我们创建了一个因子图(graph)和一个初始估计(initialEstimate)。我们将机器人的位姿插入到初始估计中,并将其作为GroundPlaneFactor的位姿变量。我们创建了一个GroundPlaneFactor实例,并将其加入到因子图中。最后,我们使用LevenbergMarquardtOptimizer对因子图进行优化,得到了最优位姿的估计结果。
最后,让我们来看看如何计算雅克比矩阵。在GroundPlaneFactor的evaluateError函数中,我们可以传入一个Matrix&类型的参数H。如果H不为空,我们需要计算误差向量对位姿变量的雅克比矩阵。以下是一个示例代码:
```c++
// Evaluate error and compute Jacobians
Matrix H;
Vector error = groundFactor->evaluateError(result.at<Pose3>(/* key */), boost::optional<Matrix&>(H));
```
在上面的代码中,我们使用result.at<Pose3>(/* key */)获取最优位姿的估计结果,并调用GroundPlaneFactor的evaluateError函数。我们将一个Matrix&类型的参数传入evaluateError函数,这表示我们需要计算雅克比矩阵。如果H不为空,我们可以得到误差向量对位姿变量的雅克比矩阵。
希望这些代码能够对您有所帮助,如果您有任何问题,请随时问我。
阅读全文