6-UCU并联机器人运动学正解,写出matlab
时间: 2023-07-19 14:17:39 浏览: 110
好的,针对您的问题,我可以提供一段基于Matlab的6-UCU并联机器人运动学正解的程序示例,供您参考。以下是程序的主要步骤:
1. 定义机器人的DH参数和初始位姿,以及期望的末端执行器坐标
```matlab
% 机器人的DH参数
a1 = 0; d1 = 0.5; alpha1 = pi/2;
a2 = 1; d2 = 0; alpha2 = 0;
a3 = 1; d3 = 0; alpha3 = 0;
a4 = 1; d4 = 0; alpha4 = 0;
a5 = 0; d5 = 0; alpha5 = pi/2;
a6 = 0; d6 = 0.5; alpha6 = 0;
% 初始位姿
T01 = [cos(pi/4) -sin(pi/4) 0 0; sin(pi/4) cos(pi/4) 0 0; 0 0 1 0; 0 0 0 1];
T12 = [1 0 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1];
T23 = [1 0 0 1; 0 1 0 0; 0 0 1 0; 0 0 0 1];
T34 = [1 0 0 1; 0 1 0 0; 0 0 1 0; 0 0 0 1];
T45 = [1 0 0 1; 0 1 0 0; 0 0 1 0; 0 0 0 1];
T56 = [cos(-pi/4) -sin(-pi/4) 0 0; sin(-pi/4) cos(-pi/4) 0 0; 0 0 1 1; 0 0 0 1];
T06 = T01*T12*T23*T34*T45*T56;
% 期望的末端执行器坐标
P = [1; 1; 1];
```
2. 定义迭代精度、最大迭代次数以及关节角度的初始值
```matlab
% 迭代精度和最大迭代次数
eps = 1e-6;
max_iter = 100;
% 关节角度的初始值
q = [0; 0; 0; 0; 0; 0];
```
3. 使用Matlab的符号计算工具箱,根据DH参数和关节角度,计算出机器人的正运动学方程
```matlab
% 符号变量定义
syms a d alpha theta;
% 机器人的正运动学方程
T = [cos(theta) -sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta);
sin(theta) cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta);
0 sin(alpha) cos(alpha) d;
0 0 0 1];
```
```matlab
% 正运动学方程的求解
T01_sym = subs(T, [a, d, alpha, theta], [a1, d1, alpha1, q(1)]);
T12_sym = subs(T, [a, d, alpha, theta], [a2, d2, alpha2, q(2)]);
T23_sym = subs(T, [a, d, alpha, theta], [a3, d3, alpha3, q(3)]);
T34_sym = subs(T, [a, d, alpha, theta], [a4, d4, alpha4, q(4)]);
T45_sym = subs(T, [a, d, alpha, theta], [a5, d5, alpha5, q(5)]);
T56_sym = subs(T, [a, d, alpha, theta], [a6, d6, alpha6, q(6)]);
T06_sym = T01_sym*T12_sym*T23_sym*T34_sym*T45_sym*T56_sym;
```
4. 将正运动学方程转化为数值计算形式,计算出机器人的执行器坐标
```matlab
% 将符号变量转化为数值变量
T06_val = double(subs(T06_sym));
% 计算机器人的执行器坐标
P_val = T06_val(1:3, 4);
```
5. 计算执行器坐标与期望坐标之间的误差
```matlab
% 计算误差
err = norm(P - P_val);
```
6. 如果误差小于迭代精度或者迭代次数超过最大迭代次数,则退出迭代;如果误差大于迭代精度,则根据误差大小和方向,计算出关节角度的调整量
```matlab
% 迭代求解
iter = 0;
while err > eps && iter < max_iter
% 计算雅克比矩阵
J = zeros(6, 6);
for i = 1:6
% 对第i个关节角度求偏导
J(:, i) = simplify(diff(T06_sym(1:3, 4), q(i)));
end
% 计算关节角度的调整量
dq = pinv(J)*(P - P_val);
% 更新关节角度
q = q + dq;
% 重新计算执行器坐标和误差
T06_sym = subs(T06, [a, d, alpha, theta], [a1, d1, alpha1, q(1)], ...
[a, d, alpha, theta], [a2, d2, alpha2, q(2)], ...
[a, d, alpha, theta], [a3, d3, alpha3, q(3)], ...
[a, d, alpha, theta], [a4, d4, alpha4, q(4)], ...
[a, d, alpha, theta], [a5, d5, alpha5, q(5)], ...
[a, d, alpha, theta], [a6, d6, alpha6, q(6)]);
T06_val = double(subs(T06_sym));
P_val = T06_val(1:3, 4);
err = norm(P - P_val);
% 迭代次数加1
iter = iter + 1;
end
```
以上是基于Matlab的6-UCU并联机器人运动学正解的程序示例,供您参考。需要注意的是,由于6-UCU并联机器人的运动学正解较为繁琐,程序中可能存在一些计算误差和精度问题,需要根据具体情况进行调整和优化。
阅读全文