sigma = 1; x = -2:0.01:2; y = -2:0.01:1.5; [X, Y] = meshgrid(x, y); %X = X; %Y = Y; P_E = X + sqrt(3) * Y + sigma/2 * (X.^2+Y.^2-1).^2; figure subplot(121) contour(X, Y, P_E, 80) sigma = 8; x = -2:0.01:2; y = -2:0.01:1.5; [X, Y] = meshgrid(x, y); %X = X; %Y = Y; P_E = X + sqrt(3) * Y + sigma/2 * (X.^2+Y.^2-1).^2; subplot(122) contour(X, Y, P_E, 180) 将matlib转换成python
时间: 2024-04-04 19:34:30 浏览: 134
import numpy as np
import matplotlib.pyplot as plt
sigma = 1
x = np.arange(-2, 2.01, 0.01)
y = np.arange(-2, 1.51, 0.01)
X, Y = np.meshgrid(x, y)
P_E = X + np.sqrt(3) * Y + sigma/2 * (X**2 + Y**2 - 1)**2
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].contour(X, Y, P_E, 80)
ax[0].set_title("sigma = 1")
sigma = 8
X, Y = np.meshgrid(x, y)
P_E = X + np.sqrt(3) * Y + sigma/2 * (X**2 + Y**2 - 1)**2
ax[1].contour(X, Y, P_E, 180)
ax[1].set_title("sigma = 8")
plt.show()
相关问题
补全代码 sigma = 1; x = -2:0.01:2; y = -2:0.01:1.5; [X, Y] = meshgrid(x, y); %X = X; %Y = Y; P_E = X + sqrt(3) * Y + sigma/2 * (X.^2+Y.^2-1).^2; figure subplot(121) contour(X, Y, P_E, 80) sigma = 8; x = -2:0.01:2; y = -2:0.01:1.5; [X, Y] = meshgrid(x
以下是代码的完整版:
```matlab
sigma = 1;
x = -2:0.01:2;
y = -2:0.01:1.5;
[X, Y] = meshgrid(x, y);
P_E = X + sqrt(3) * Y + sigma/2 * (X.^2+Y.^2-1).^2;
figure
subplot(121)
contour(X, Y, P_E, 80)
sigma = 8;
x = -2:0.01:2;
y = -2:0.01:1.5;
[X, Y] = meshgrid(x, y);
P_E = X + sqrt(3) * Y + sigma/2 * (X.^2+Y.^2-1).^2;
subplot(122)
contour(X, Y, P_E, 80)
```
这段代码是用MATLAB实现的,其中包含两个子图,分别对应着不同的惩罚系数sigma。首先,我们在一个二维网格上计算出函数P_E的值,然后通过contour函数绘制出等高线图。其中,sigma=1和sigma=8分别对应着左右两张子图。可以看到,当sigma变大时,等高线图变得更加陡峭,目标函数的极小值也变得更加明显。
close all I = imread('image2.png'); I = rgb2gray(I); I = imresize(I,[540,533]); subplot(121);imshow(I);title('原图'); sigma = 1; halfwid = sigma * 3; [xx, yy] = meshgrid(-halfwid:halfwid, -halfwid:halfwid); Gxy = exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2)); Gx = xx .* exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2)); Gy = yy .* exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2)); %%apply sobel in herizontal direction and vertical direction compute the %%gradient %fx = [-1 0 1;-1 0 1;-1 0 1]; %fy = [1 1 1;0 0 0;-1 -1 -1]; Ix = conv2(I,Gx,'same'); Iy = conv2(I,Gy,'same'); %%compute Ix2, Iy2,Ixy Ix2 = Ix.*Ix; Iy2 = Iy.*Iy; Ixy = Ix.*Iy; %%apply gaussian filter h = fspecial('gaussian',[6,6],1); Ix2 = conv2(Ix2,h,'same'); Iy2 = conv2(Iy2,h,'same'); Ixy = conv2(Ixy,h,'same'); height = size(I,1); width = size(I,2); result = zeros(height,width); R = zeros(height,width); Rmax = 0; %% compute M matrix and corner response for i = 1:height for j =1:width M = [Ix2(i,j) Ixy(i,j);Ixy(i,j) Iy(i,j)]; R(i,j) = det(M) - 0.04*(trace(M)^2); if R(i,j)> Rmax Rmax = R(i,j); end end end %% compare whith threshold count = 0; for i = 2:height-1 for j = 2:width-1 if R(i,j) > 0.01*Rmax result(i,j) = 1; count = count +1; end end end %non-maxima suppression result = imdilate(result, [1 1 1; 1 0 1; 1 1 1]); [posc,posr] = find(result == 1); subplot(122);imshow(I);title('哈里斯算子'); hold on; plot(posr,posc,'r.');原理
这段代码实现了哈里斯角点检测算法来找出图像中的角点。哈里斯算子是一种基于图像灰度值变化的特征点检测算法,其原理是通过计算图像中每个像素点的局部灰度值变化程度,来判断该点是否为角点。具体来说,它通过计算每个像素点的梯度矩阵M,然后根据M的特征值来判断该点是否为角点,即特征值较大的点为角点。其中,特征值的大小和方向代表了该点周围灰度变化的强弱和方向。
代码中的实现步骤包括:
1. 对图像进行高斯平滑处理,以减少噪声的影响。
2. 计算图像每个像素点的梯度矩阵M,然后计算出M的特征值,用于判断是否为角点。
3. 根据计算得到的角点响应函数,设置一个阈值,来确定哪些点为角点。
4. 对检测到的角点进行非极大值抑制,以消除重复检测的角点。
5. 在图像上绘制检测到的角点。
通过这些步骤,代码可以实现对图像中角点的检测和定位。
阅读全文