【Basic】Basic Image Plotting in MATLAB: Plotting 2D Function Images

发布时间: 2024-09-15 02:12:28 阅读量: 21 订阅数: 51
PDF

Basic Surface Plotting in MatLab.pdf

star5星 · 资源好评率100%
# 2.1 Fundamental Principles of Function Graph Plotting ### 2.1.1 Coordinate Systems and Pixel Coordinates Graph plotting in MATLAB is based on the Cartesian coordinate system, with the x-axis horizontal and the y-axis vertical. Each pixel in an image is uniquely determined by its position in the coordinate system. Pixel coordinates are represented by integers, with the top-left pixel coordinate being (1, 1), and the bottom-right pixel coordinate being (width, height), where width and height are the width and height of the image, respectively. ### 2.1.2 The Process of Graph Plotting The process of graph plotting involves the following steps: 1. **Data Preparation:** Convert function data into MATLAB variables. 2. **Coordinate Transformation:** Convert data points from Cartesian coordinates to pixel coordinates. 3. **Pixel Coloring:** Set the color of each pixel based on the value of the data points. 4. **Image Generation:** Combine the colored pixels to form a complete image. # 2. Theory and Practice of 2D Function Graph Plotting ### 2.1 Fundamental Principles of Function Graph Plotting #### 2.1.1 Coordinate Systems and Pixel Coordinates In MATLAB, graph plotting is based on the Cartesian coordinate system. The origin of the coordinate system is located at the bottom-left of the image, with the x-axis extending to the right and the y-axis extending upwards. An image is composed of pixels, each with its own coordinate value. Pixel coordinates are relative to the top-left corner of the image, with the top-left pixel's coordinates being (1, 1). #### 2.1.2 The Process of Graph Plotting The process of plotting a function graph can be divided into the following steps: 1. **Define the Function:** Use MATLAB syntax to define the function to be plotted. 2. **Create the Canvas:** Use the `figure` command to create a canvas, specifying the size and position of the image. 3. **Draw the Image:** Use the `plot` function to draw the function data onto the canvas. 4. **Set Attributes:** Use the attributes of the `plot` function (such as `xlabel`, `ylabel`) to customize the appearance of the image. 5. **Display the Image:** Use the `imshow` command to display the image on the canvas. ### 2.2 MATLAB Syntax for Function Graph Plotting #### 2.2.1 Basic Usage of the `plot()` Function The `plot` function is the basic function in MATLAB for plotting function graphs. Its syntax is as follows: ``` plot(x, y) ``` Where: * `x`: Data for the x-axis. * `y`: Data for the y-axis. For example, to plot the graph of the function `y = x^2`: ``` x = linspace(-5, 5, 100); y = x.^2; plot(x, y) ``` #### 2.2.2 Attribute Settings for the `plot()` Function The `plot` ***mon attribute setting functions include: * `xlabel`: Sets the x-axis label. * `ylabel`: Sets the y-axis label. * `title`: Sets the title of the image. * `LineWidth`: Sets the line width. * `Color`: Sets the line color. For example, setting the image title to "Quadratic Function Graph": ``` plot(x, y) title('Quadratic Function Graph') ``` # 3.1 Image Scaling and Translation #### 3.1.1 Scaling of Coordinate Axes MATLAB provides various methods for scaling coordinate axes, including: - `xlim()` and `ylim()` functions: Set the range of the x-axis and y-axis. - `axis()` function: Set the range and scale of the coordinate axes. - `zoom()` function: Interactively scale the coordinate axes. **Code Block:** ``` % Set the range of the x-axis to [0, 10] xlim([0, 10]); % Set the range of the y-axis to [-5, 5] ylim([-5, 5]); % Set the scale of the x-axis to 1 set(gca, 'XTick', 0:1:10); % Set the scale of the y-axis to 2 set(gca, 'YTick', -5:2:5); % Interactive scaling zoom on; ``` **Logical Analysis:** * The `xlim()` and `ylim()` functions set the range of the coordinate axes, specifying the minimum and maximum values. * The `axis()` function sets the range and scale of the coordinate axes, allowing for the specification of scale intervals and scale labels. * The `set(gca, 'XTick')` and `set(gca, 'YTick')` functions set the scale of the coordinate axes, specifying the scale values. * The `zoom on` command enables interactive scaling, allowing users to zoom in on the coordinate axes using a mouse. #### 3.1.2 Image Translation MATLAB provides the `pan()` function for translating images. **Code Block:** ``` % Translate the image 2 units to the right pan x 2; % Translate the image 1 unit upwards pan y 1; % Interactive translation pan on; ``` **Logical Analysis:** * The `pan x` and `pan y` functions translate the image, specifying the distance to translate along the x-axis or y-axis. * The `pan on` command enables interactive translation, allowing users to translate the image using a mouse. # 4. Practical Applications of Function Graph Plotting ### 4.1 Image Plotting in Scientific Computing #### 4.1.1 Time Domain and Frequency Domain Images of Signals In scientific computing, image plotting is often used to visualize the time domain and frequency domain characteristics of signals. **Time Domain Image** represents the changes in a signal over time. In MATLAB, the `plot()` function can be used to draw time domain images. For example, to draw the time domain image of a sine signal: ```matlab t = 0:0.01:10; y = sin(2*pi*1*t); plot(t, y); xlabel('Time (s)'); ylabel('Amplitude'); title('Time Domain Image of a Sine Signal'); ``` **Frequency Domain Image** represents the distribution of a signal in the frequency domain. In MATLAB, the `fft()` function can be used to compute the signal's spectrum, and then the `plot()` function can be used to draw the frequency domain image. For example, to draw the frequency domain image of a sine signal: ```matlab Y = fft(y); f = (0:length(Y)-1)*(1/t(end)); plot(f, abs(Y)); xlabel('Frequency (Hz)'); ylabel('Amplitude'); title('Frequency Domain Image of a Sine Signal'); ``` #### 4.1.2 Distribution Images of Statistical Data Image plotting can also be used to visualize the distribution of statistical data. For example, to draw the probability density function (PDF) image of a normal distribution: ```matlab mu = 0; sigma = 1; x = -3:0.01:3; y = normpdf(x, mu, sigma); plot(x, y); xlabel('x'); ylabel('Probability Density'); title('Probability Density Function Image of a Normal Distribution'); ``` ### 4.2 Image Plotting in Image Processing #### 4.2.1 Image Grayscale Level Histogram The image grayscale level histogram shows the number of pixels for each grayscale level in an image. In MATLAB, the `imhist()` function can be used to plot the grayscale level histogram. For example, to plot the grayscale level histogram of an image: ```matlab I = imread('image.jpg'); imhist(I); xlabel('Grayscale Level'); ylabel('Number of Pixels'); title('Grayscale Level Histogram of an Image'); ``` #### 4.2.2 Image Edge Detection and Contour Extraction Image edge detection and contour extraction are important techniques in image processing. In MATLAB, the `edge()` function can be used for edge detection, and then the `bwboundaries()` function can be used to extract contours. For example, to detect the edges of an image and extract contours: ```matlab I = imread('image.jpg'); edges = edge(I, 'canny'); [B, L] = bwboundaries(edges); figure; imshow(I); hold on; for i = 1:length(B) boundary = B{i}; plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2); end title('Image Edge Detection and Contour Extraction'); ``` # 5.1 3D Function Graph Plotting ### 5.1.1 `surf()` Function and `mesh()` Function In MATLAB, the `surf()` and `mesh()` functions can be used to plot 3D function graphs. The `surf()` function generates a colored surface, while the `mesh()` function generates a mesh surface. ``` % Define a 3D function [X, Y] = meshgrid(-2:0.1:2); Z = X.^2 + Y.^2; % Use `surf()` to plot a 3D surface figure; surf(X, Y, Z); title('3D Surface Plotted with `surf()`'); xlabel('X'); ylabel('Y'); zlabel('Z'); % Use `mesh()` to plot a 3D mesh figure; mesh(X, Y, Z); title('3D Mesh Plotted with `mesh()`'); xlabel('X'); ylabel('Y'); zlabel('Z'); ``` ### 5.1.2 Rotation and Scaling of 3D Images The plotted 3D images can be rotated using the `view()` function and scaled using the `campos()` function. ``` % Rotate a 3D image figure; surf(X, Y, Z); view(3); % Rotate the image to show it from a 3D perspective title('Rotated 3D Surface'); % Scale a 3D image figure; surf(X, Y, Z); campos([10, 10, 10]); % Scale the image to be displayed from the perspective of [10, 10, 10] title('Scaled 3D Surface'); ``` ### 5.1.3 Illumination of 3D Images MATLAB provides the `light` and `lighting` functions to control the illumination effects of 3D images. ``` % Add a light source figure; surf(X, Y, Z); light('Position', [10, 10, 10]); % Add a light source at position [10, 10, 10] title('3D Surface with Added Light Source'); % Set the lighting model figure; surf(X, Y, Z); lighting phong; % Set the lighting model to Phong title('3D Surface with Set Lighting Model'); ``` # 6. Performance Optimization of MATLAB Image Plotting ### 6.1 Optimization of Image Plotting Algorithms #### 6.1.1 Sparse Matrix Plotting For sparse matrices (i.e., matrices with most elements being zero), specialized sparse matrix plotting algorithms can be used to improve performance. MATLAB provides the `spy()` function, which can quickly plot the distribution of non-zero elements in a sparse matrix. ``` % Create a sparse matrix A = sparse(1000, 1000, 0.01); % Use `spy()` to plot the sparse matrix spy(A); ``` #### 6.1.2 Block Plotting For large images, they can be divided into multiple smaller blocks and then plotted individually. This method of block plotting can reduce the memory overhead of plotting all pixels at once, thereby improving performance. ``` % Create a large image image = randn(10000, 10000); % Divide the image into 100 blocks blocks = mat2cell(image, 100 * ones(1, 100), 100 * ones(1, 100)); % Plot the image block by block for i = 1:100 for j = 1:100 subplot(10, 10, i + (j - 1) * 10); imshow(blocks{i, j}); end end ``` ### 6.2 Selection of Image File Formats #### 6.2.1 Pros and Cons of Different Image Formats Different image file formats have different pros and cons, and the choice depends on the intended use of the image and performance requirements. | Format | Pros | Cons | |---|---|---| | PNG | Lossless compression, supports transparency | Larger file size | | JPEG | Lossy compression, smaller file size | Introduces distortion | | GIF | Lossless compression, supports animation | Limited color range | | TIFF | Lossless compression, supports multiple layers | Larger file size | #### 6.2.2 Image File Compression and Optimization By compressing and optimizing image files, the file size can be reduced, thereby speeding up loading and transmission. MATLAB provides various image compression and optimization functions, such as `imwrite()` and `imresize()`. ``` % Compress the image into PNG format imwrite(image, 'image.png', 'Quality', 90); % Resize the image image_resized = imresize(image, 0.5); ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

深度解析EDA软件:算法优化让你的设计飞起来

![EDA试卷及答案](https://dl-preview.csdnimg.cn/85684172/0006-510e0b7d86bc2845365f80398da38d4f_preview-wide.png) # 摘要 本文全面概述了EDA(电子设计自动化)软件及其在现代电子设计中的核心作用。首先介绍了EDA软件的定义、发展历程和主要分类,然后深入探讨了算法优化的理论背景和实践应用,包括算法复杂度分析、设计策略及优化方法论。接着,文章分析了布局布线、逻辑综合和设计验证优化的实际案例,并讨论了算法优化的高级技巧,如机器学习、多核并行计算和硬件加速技术。通过对EDA软件性能评估指标的分析,本

【管理与监控】:5个关键步骤确保Polycom Trio系统最佳性能

![【管理与监控】:5个关键步骤确保Polycom Trio系统最佳性能](https://images.tmcnet.com/tmc/misc/articles/image/2018-mar/Polycom-Trio-Supersize.jpg) # 摘要 本文全面介绍了Polycom Trio系统的架构、性能评估、配置优化、监控与故障诊断、扩展性实践案例以及持续性能管理。通过对Polycom Trio系统组件和性能指标的深入分析,本文阐述了如何实现系统优化和高效配置。文中详细讨论了监控工具的选择、日志管理策略以及维护检查流程,旨在通过有效的故障诊断和预防性维护来提升系统的稳定性和可靠性。

电力半导体器件选型指南:如何为电力电子项目挑选最佳组件

![电力半导体器件选型指南:如何为电力电子项目挑选最佳组件](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-4a720566339bf7214898386f0ab464d0.png) # 摘要 本文全面概述了电力半导体器件的基础知识、技术参数、选型实践考量以及测试与验证流程。在技术参数方面,文章详细介绍了器件的电气特性、热性能和可靠性指标,为电力系统工程师提供了选型时的决策依据。选型实践部分则侧重于应用场景分析、成本效益评估和未来发展考量,旨在指导工程师们在实际工程中做出既经济又可靠的选择。此外,本文还

【mike11建筑模拟全攻略】:从入门到高级应用的全方位教程

![【mike11建筑模拟全攻略】:从入门到高级应用的全方位教程](https://www.teknoring.com/wp-content/uploads/2013/11/3184_scienza_delle_c-e1470384927250.jpg) # 摘要 本文全面介绍了mike11建筑模拟软件的各个方面,从基础操作到高级技巧,为建筑模拟提供了一个系统的指导。首先,文章对mike11软件的界面布局、基本设置和视图渲染等基础操作进行了详细介绍。接着,深入探讨了建筑模拟理论基础,包括模拟的目的、建筑物理基础以及模拟流程和参数设置。进阶技巧章节则着重于高级建模技术、环境与气候模拟以及能效与

斯坦福教材揭秘:凸优化理论到实践的快速跨越

![凸优化convex optimization教材 斯坦福](https://img-blog.csdnimg.cn/171d06c33b294a719d2d89275f605f51.png) # 摘要 本论文系统地介绍了凸优化的基本概念、数学基础、理论框架,以及在工程和科研中的应用案例。首先,文章概述了凸优化的基础知识和数学基础,并详细解析了线性规划、二次规划和对偶理论等关键理论。接着,文章探讨了凸优化工具的使用和环境搭建,强调了模型建立与简化的重要性。随后,通过机器学习、信号处理、运筹学和控制系统等多个领域的应用案例,展示了凸优化技术的实用性。最后,论文展望了凸优化领域的发展趋势,讨论

【tc itch扩展性】:拉伸参数在二次开发中的角色与挑战,稀缺的深入探讨

![【tc itch扩展性】:拉伸参数在二次开发中的角色与挑战,稀缺的深入探讨](https://support.streamelements.com/hc/article_attachments/18637596709906) # 摘要 本文对tcsh shell环境中的参数扩展技术进行了全面的探讨和分析。从参数扩展的基本概念、规则、类别及模式匹配等理论基础出发,深入解析了其在脚本编写、调试优化以及第三方工具集成中的具体应用。文章还着重介绍了复杂参数处理、函数编程中的应用技巧,以及在错误处理中的重要作用。针对二次开发中的挑战,提出了相应的策略和解决方案,并通过案例研究具体分析了参数扩展在特

【网络延迟优化】:揭秘原因并提供实战优化策略

![【网络延迟优化】:揭秘原因并提供实战优化策略](http://www.gongboshi.com/file/upload/202210/24/17/17-18-32-28-23047.jpg) # 摘要 网络延迟是影响数据传输效率和用户体验的关键因素,尤其是在实时性和高要求的网络应用中。本文深入探讨了网络延迟的定义、产生原因、测量方法以及优化策略。从网络结构、设备性能、协议配置到应用层因素,本文详细分析了导致网络延迟的多方面原因。在此基础上,文章提出了一系列实战策略和案例研究,涵盖网络设备升级、协议调整和应用层面的优化,旨在减少延迟和提升网络性能。最后,本文展望了未来技术,如软件定义网络

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )